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Abstract: While all models of Majorana neutrino masses lead to the same dimension five

effective operator, which does not conserve lepton number, the dimension six operators

induced at low energies conserve lepton number and differ depending on the high energy

model of new physics. We derive the low-energy dimension six operators which are char-

acteristic of generic Seesaw models, in which neutrino masses result from the exchange of

heavy fields which may be either fermionic singlets, fermionic triplets or scalar triplets.

The resulting operators may lead to effects observable in the near future, if the coefficients

of the dimension five and six operators are decoupled along a certain pattern, which turns

out to be common to all models. The phenomenological consequences are explored as well,

including their contributions to µ → eγ and new bounds on the Yukawa couplings for each

model.
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1. Introduction

The experimental observation of non-zero neutrino masses and mixings constitutes evidence

for physics beyond the Standard Model (SM) and points to the existence of a new, yet

unknown, physics scale. It has been already a few years since the breaking of such exciting

news and nevertheless little — if anything — is known about the underlying physics. The

difficulty lies in both the fact that neutrinos are very weakly interacting particles and, more

important, in the tiny value of their masses — orders of magnitude lighter than any other

fermion masses — pointing to very suppressed effects. The absence of exotic experimental

signals other than neutrino masses, as well as the theoretical criteria of naturalness, point

to values of the new physics scale, M , larger than the electroweak scale.

It is worth recalling that the evidence for neutrino masses comes from neutrino oscilla-

tions, which detect the interference between the different paths taken by different neutrinos

when traveling a long distance. The paths differ because the masses differ and what has

been measured is the relative phase shift induced, which is only sizable after extremely

long distances. In other words, detection has been possible because neutrino masses af-

fect neutrino propagation. Other possible low-energy effects of the underlying theory, i.e.

exotic couplings, are typically zero-distance effects which cannot benefit from such an en-

hancement. Its suppression is only easily overcome at very high energies, with the particle

momenta equal or larger than the scale M , as for instance in leptogenesis scenarios, where

the high energies of the early universe allow the heavy fields at the origin of neutrino masses

to roam freely.

To see what could be the nature and magnitude of the low energy effects associated to

neutrino masses it is convenient to rephrase the above in terms of a generic effective low-

energy theory. Effective theories allow rather model-independent analysis based on the

fundamental symmetries, while only the coefficient of the effective operators are model-

dependent. The impact at low energies of the heavy fields present in the putative high-

energy theory can be parametrized, without loss of generality, by an effective Lagrangian

including:

• Corrections to the parameters of the SM Lagrangian.

• The addition to the SM Lagrangian of a tower of non-renormalizable higher-dimension

operators, invariant under the SM gauge group. The latter are made out of the SM

fields active at low energies and their coefficients weighted by inverse powers of the

high scale M ,

Leff = LSM + δLd=5 + δLd=6 + · · · (1.1)
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The only possible dimension 5 (d = 5) operator is the famous Weinberg operator [1],

δLd=5 =
1

2
cd=5
αβ

(
ℓc
Lαφ̃∗

) (
φ̃† ℓLβ

)
+ h.c. , (1.2)

where ℓL stands for the lepton weak doublets,1 greek letters denote flavour indices and φ̃

is related to the standard Higgs doublet φ ≡ (φ+, φ0) by φ̃ = iτ2φ
∗. Finally, cd=5

αβ is a

coefficient matrix of inverse mass dimension, i.e. O(1/M) . This operator is not invariant

under the B−L symmetry, with B and L denoting respectively baryon and lepton number,

which is an accidental symmetry of the SM. Upon electroweak symmetry breaking, <

φ0 >= v/
√

2, v = 246 GeV, this term results in Majorana neutrino masses. Such a d = 5

operator is characteristic of all theories with Majorana neutrino masses, such as for instance

the minimal (type I) Seesaw model [2]. Therefore the knowledge of cd=5
αβ doesn’t allow to

discriminate between these models. It is very suggestive that the lowest-order effect of high-

energy beyond the Standard Model physics may be neutrino masses. There is no hope to

see any other low energy effects, e.g. zero distance effects, associated to this operator.

These effects are necessarily tiny since neutrino masses — which fix the cd=5
αβ coefficients

— are tiny.2

The case of the dimension six (d = 6) SU(3) × SU(2) × U(1) invariant operators is

different, though. There is a plethora of such operators [3]. Different classes of models

result in different d = 6 operators. Their identification and eventually their experimental

selection is then a very important tool to discriminate the origin of neutrino masses. An

important property of these operators is that they are not necessarily suppressed as the

d = 5 operator and, therefore, may lead to observables low-energy effects. The point is that

all of them preserve B−L, in contrast with the unique d = 5 operator above. This suggests

that, from the point of view of symmetries, it may be natural to consider large coefficients

for the d = 6 operators resulting from the new physics, while having small coefficients for

the B −L odd operator. Such a possibility would require to decouple the coefficients of the

d = 6 operators from that of the d = 5 operator responsible for neutrino masses.

The first purpose of this work is to identify the effective d = 6 operators which are

characteristic of Seesaw models (section 2). In the latter, the tiny neutrino masses naturally

result from the tree-level exchange of heavy particles, which may be either fermions or

bosons. The exchange of heavy SM singlet fermions is the essence of the minimal Seesaw

model (type I) and its generalizations. Analogously, the exchange of heavy SU(2)L scalar

triplets is another possibility which has been widely explored, as in the type II Seesaw

model and its generalizations [4]. SU(2)L fermionic triplets may also mediate light neutrino

masses (type III Seesaw) [5, 6, 6 – 9]. Most beyond the SM theories with Majorana neutrino

masses typically incorporate one of these mechanisms or combinations of them: the lessons

1The charge-conjugate spinor is denoted ψc ≡ Cψ
T
, where T denotes transposition and C charge

conjugation.
2Notice that neutrino masses have been detected in neutrino oscillation experiments, which in fact

measure differences between the square of neutrino masses. That is, if the neutrinos are Majorana particles,

the experiments have already measured an effect suppressed as (cd=5

αβ )2 ∼ 1/M2 instead of 1/M and thus

quantitatively alike to that from generic dimension six operators.
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learnt from their study should be of extensive relevance. We will thus discuss the effective

low-energy Lagrangians for the three generic cases: heavy fermion singlets, heavy scalar

triplets and heavy fermionic triplets, illustrated in figure 1.

Next, in a second stage (section 3) we consider the possibility that the d = 6 operators

are not as suppressed as the d = 5 operator, so that observable low-energy effects may be

expected. Since these operators are suppressed by 1/M2, this requires a value of M not

far beyond the electroweak scale. We consider this possibility, which is not excluded at all

and may even be supported by hierarchy arguments. It will then be shown that in order

to have observable low energy effects, it is necessary and possible to decouple and suppress

the coefficient of the d = 5 operator relative to the d = 6 operator coefficients, in a way

which accommodates tiny neutrino masses while allowing large Yukawa couplings. It will

be shown that such decoupling requires a common and rather model-independent pattern,

which we identify.

In a third stage (section 4) and independently of how large is the scale M , we analyze

the long list of phenomenological signals which may arise in each of the three models con-

sidered, such as signals associated to non-unitarity or other effects in different observables:

neutrino oscillations, lepton and gauge-boson decays. From present data, limits will be set

in all models on the coefficients of the d = 6 operators. From them, we derive systematic

tables of bounds on the Yukawa couplings in each of the Seesaw models. Expectations

for the sensitivity of future experiments will be explored, including the contributions to

li → ljγ. We show that, in case the decoupling pattern mentioned above occurs, the limits

can be saturated if M is still larger than but close to the electroweak scale. The possibilities

for direct or indirect discovery of the origin of neutrino masses at the LHC or ILC will be

(briefly) discussed.

An important phenomena at the origin of many of the potential low energy effects is

non-unitarity of the leptonic mixing matrices. Special emphasis will be set on analyzing

whether Seesaw models induce at low energies a non-unitary leptonic mixing matrix. It

is expected in all generality [10] that the tree-level exchange of heavy fermions (scalars)

will (not) induce it. Indeed, only leptons can mix with other fermions leading to (unitary)

mixing matrices of dimension larger than 3, while the submatrix for the light fields needs

not be unitary. In a more technical view, the exchange of heavy fermions among light

leptons can be understood from the expansion of the heavy field propagator in powers of

1/M ,
1

D/ − M
∼ − 1

M
+

1

M
D/

1

M
+ . . . (1.3)

The first term in this expansion is a scalar operator, which flips chirality, generating for

instance a light neutrino mass term. The second term, instead, preserves chirality and

induces a correction to the kinetic term for the light fields. The recovery of canonically

normalized kinetic energies for the latter requires in general a flavour-dependent rescaling,

which is a non-unitary transformation, surfacing as non-unitary mixing matrices in the

leptonic weak currents [10]. Non-unitarity of the leptonic mixing matrix is therefore a

basic property of models where masses are induced by heavy fermions. In contrast, in

scalar-mediated mechanisms, all terms in the scalar propagator change chirality and thus

– 4 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
1

NR

ℓ

φ

YNY †
N

φ

ℓ

φ

ℓ

φ

ℓ

∆

µ∆

Y∆

ΣR

ℓ

φ

YΣY †
Σ

φ

ℓ

Figure 1: The three generic realizations of the Seesaw mechanism, depending on the nature of the

heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left, SM triplet scalars (type II

Seesaw) and SM triplet fermions (type III Seesaw) on the right.

cannot induce non-unitary mixing at tree-level. The minimal (type I) Seesaw model has

been previously shown [11] to induce a non-unitary leptonic mixing matrix. In this work

we will explicitly analyze the issue for the other types of Seesaw models.

2. The basic seesaw scenarios

Let us analyze separately the three different minimal models which result from adding either

fermionic singlets or scalar triplets or fermionic triplets to the minimal SM field content.

It is expected that the lessons obtained from the analysis of the three basic models will

hold as well for their possible generalizations, extensions or embeddings in larger theories.

2.1 Fermionic singlets: type I seesaw

As this case has been previously studied [11], only the main results are resumed here for

completion. The minimal Seesaw Lagrangian is the most general renormalizable Lagrangian

which can be written for the SM gauge group adding only right-handed neutrinos to the

SM fermion content of the theory. The leptonic Lagrangian of the Seesaw model is given

by

Lleptons = LKE
leptons + LSB

leptons, (2.1)

where

LKE
leptons = i ℓL D/ℓL + i eR D/eR + iNR ∂/NR (2.2)

contains the kinetic energy and gauge interaction terms of the left-handed lepton doublets

ℓL, the right-handed charged leptons eR, the right-handed neutrinos NR and

LSB
leptons = −ℓL φYe eR − ℓL φ̃ Y †

N NR − 1

2
NR MN NR

c + h.c. (2.3)

contains the Yukawa interactions with coupling YN and the Majorana mass term of

the gauge-singlet right-handed neutrinos, corresponding to the new physics scale(s) MN .

Flavour indices are implicit in these expressions and we will work in a basis in which MN

is a diagonal complex matrix.
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2.1.1 Dimension 5 operator

In the flavour basis, the resulting d = 5 operator coefficients are given in terms of the

parameters of the high-energy theory as (see figure 1)

cd=5 = Y T
N

1

MN
YN . (2.4)

Upon electroweak symmetry breaking, it leads to a Majorana mass matrix for the light

neutrinos of the form

mν ≡ −v2

2
cd=5 = −1

2
Y T

N

v2

MN
YN . (2.5)

For values of the Yukawa couplings YN of order unity, the tiny experimental values of

neutrino masses require a scale MN suggestively close to the Grand Unification scale.

2.1.2 Dimension 6 operator

In ref. [11], the d = 6 low-energy effective theory, δLd=6, was determined to consist at the

tree level of the unique operator

δLd=6 = cd=6
αβ

(
ℓLαφ̃

)
i∂/

(
φ̃†ℓLβ

)
, (2.6)

where the d = 6 operator coefficients are given in terms of the parameters of the high-energy

Seesaw theory by

cd=6 = Y †
N

1

M †
N

1

MN
YN , (2.7)

which is of the same order in Yukawa couplings than its d = 5 counterpart, eq. (2.4), while

quadratically suppressed in 1/MN . When the Higgs doublet acquires a vacuum expectation

value, this d = 6 operator leads to corrections to the d = 4 kinetic energy terms for the

left-handed Majorana neutrinos, which result in a non-unitary low-energy leptonic mixing

matrix [10]. Indeed, the neutrino Lagrangian for the effective theory, including only d ≤ 6

operators and disregarding couplings to the physical Higgs particle, is given by

Ld≤6
neutrino = i νLα ∂/

(
δαβ + ǫN

αβ

)
νLβ − 1

2
νL

c
α mν αβ νLβ − 1

2
νLα m∗

ν αβ νLβ
c , (2.8)

where

ǫN ≡ v2

2
cd=6 (2.9)

is the contribution of the d = 6 operator coefficient to the left-handed neutrino kinetic

energy, which is non-diagonal in flavor space. Let us then go to a basis in which the

neutrino field is rescaled, so that the neutrino kinetic energy is canonically normalized: at

order O(1/M2), the transformation

νLα → ν ′
Lα ≡

(
δαβ + ǫN

αβ

) 1

2 νLβ (2.10)

results in a Lagrangian in the flavour basis which, at this order, takes the form (primes

will be omitted in the following),

Ld≤6
leptons = iνLα∂/νLα+ilLα∂/lLα−

1

2

[
νL

c
αmν αβνLβ+h.c.

]
−lαml αβ lβ+LCC +LNC + Lem ,

(2.11)
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where ml is the charged lepton mass matrix and

LCC =
g√
2
lLαW/ −

(
δαβ − 1

2
ǫN
αβ

)
νLβ + h.c. , (2.12)

LNC =
g

cosθW

{
1

2

[
νLαγµ

(
δαβ − ǫN

αβ

)
νLβ − lLαγµlLα

]
− sin2θW Jem

µ

}
Zµ ,

Lem = eJem
µ Aµ ,

with Jem
µ = −lγµl denoting the electromagnetic current. We can now rotate to the basis

in which the mass matrices are diagonal,

Ld≤6
leptons =

1

2
νi

(
i∂/ − mdiag

ν i

)
νi +

1

2
li

(
i∂/ − mdiag

l i

)
li + LCC + LNC + Lem . (2.13)

Now, because of the flavour-dependent field rescalings involved, the usual UPMNS matrix

appearing in the charged-current coupling is replaced by a non-unitary matrix N ,

N ≡ Ω

(
1 − ǫN

2

)
Uν , (2.14)

where Uν diagonalizes the neutrino mass matrix and Ω ≡ diag(eiω1 , eiω2 , eiω3) reabsorbs

three unphysical phases in the definition of the charged lepton fields, as usual. Details of

the procedure can be found in appendix A. Notice that, as Uν does not depend on cd=6 at

O(1/M2), in a flavour basis in which Ω is the identity matrix, N would read

N =

(
1 − ǫN

2

)
UPMNS (2.15)

and consequently NN † = (1 − ǫN ), N †N = U †
PMNS(1 − ǫN )UPMNS, within the O(1/M2

N )

considered in this work.

Whatever the flavour basis, in the mass basis the weak currents read now

J−CC
µ ≡ eLα γµ Nαi νi, (2.16)

JNC
µ ≡ 1

2
νi γµ(N † N)ij νj, (2.17)

where
∑

α N †
iα Nαj 6= δij appears in the neutral current since N is not unitary, while

the neutral current for charged leptons is the standard one. Accordingly, the Fermi con-

stant measured in experiments, GF , cannot be identified anymore with the SM tree level

combination GSM
F =

√
2g2/(8M2

W ) = 1√
2v2

, due to non-unitarity. For instance, the Fermi

constant GF extracted from the decay µ → νµeν̄e is related to GSM
F by [10]

GF = GSM
F

√
(NN †)ee(NN †)µµ . (2.18)

The rest of the parameters of the Lagrangian coincide with those in the standard treatment.

It is remarkable that putative departures from unitarity of the leptonic mixing matrix

can be now directly related to the d = 6 operator coefficients and thus to combinations of

– 7 –
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the high-energy parameters,3

|NN † − 1|αβ =
v2

2
|cd=6|αβ =

v2

2

∣∣∣∣Y
†
N

1

M †
N

1

MN
YN

∣∣∣∣
αβ

. (2.19)

In section 4.1 the present numerical constraints on |cd=6| will be explored. For Yukawa

couplings YN ∼ O(1), the coefficients of the d = 6 operator are basically the square of those

for the d = 5 operator, as eqs. (2.4) and (2.7) show. The smallness of neutrino masses then

requires e.g. MN ≫ v, which precludes the observation of exotic effects in present and

planned facilities for the minimal model discussed in this section. There are, however,

situations in which YN ∼ O(1) can be accommodated together with MN ∼ O(TeV ) and

without fine-tunings, leading to observable effects in the near future, as it will be discussed

in section 3.

In ref. [11], it was shown that the low-energy effective theory including only the d = 5

and d = 6 operators contains an equal (a greater) number of real and imaginary parameters

as the high-energy Seesaw model, when the number of right-handed neutrinos in the Seesaw

theory is equal to (less than) the number of generations of Standard Model fermions. Thus,

the determination of all d = 5 and d = 6 operator coefficients above would suffice a priori

to determine all of the parameters of the high-energy Seesaw theory. In consequence,

for instance, the leptogenesis rate can be written exclusively in terms of both operator

coefficients [11].

Other d = 6 operators will be also present in the low-energy Lagrangian, since they are

generated by radiative mixing of the above d = 6 operator in the renormalization group

running between the high-energy and low-energy scales. The effects of these other d = 6

operators are in consequence subdominant [11] and will not be further considered. The

same statement will hold for all Seesaw theories considered in this work.

2.2 Scalar triplets: type II seesaw

Assume now that the minimal SM matter content is enlarged only by the addition of a

SU(2) triplet of scalar fields
−→
∆ with hypercharge 2,

−→
∆ = (∆1,∆2,∆3) , (2.20)

whose relation to the physical charge eigenstates,

(∆++ , ∆+ , ∆0 ) , (2.21)

is given by

∆++ ≡ 1√
2
(∆1 − i∆2) , ∆+ ≡ ∆3 , ∆0 ≡ 1√

2
(∆1 + i∆2) . (2.22)

In the minimal Lagrangian, gauge invariance allows a Yukawa coupling of the scalar triplet

to two lepton doublets,

L∆ ,ν
Y = ℓ̃L Y∆(−→τ · −→∆) ℓL + h.c. , (2.23)

3In the flavour basis above mentioned, in which N is given by eq. (2.15) and the matrix Ω is the identity,

the absolute-value bars can be dropped: (NN† − 1)αβ = v2

2
cd=6

αβ = v2

2
(Y †

N
1

M
†
N

1

MN
YN)αβ .
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as well as a coupling of the scalar triplet to the Higgs doublet,

µ∆φ̃†(−→τ · −→∆)†φ + h.c. . (2.24)

In these equations τi are the Pauli matrices, Y∆ is a symmetric matrix in generation space

and ℓ̃L = iτ2(ℓL)c (i.e. ℓ̃L = −lTLCiτ2). The minimal Lagrangian then writes:

L∆ =
(
Dµ

−→
∆

)† (
Dµ−→∆

)
+

(
ℓ̃LY∆(−→τ · −→∆)ℓL + µ∆φ̃†(−→τ · −→∆)†φ + h.c.

)
(2.25)

−
{−→

∆
†
M∆

2−→∆+
1

2
λ2

(−→
∆†−→∆

)2
+λ3

(
φ†φ

) (−→
∆†−→∆

)

+
λ4

2

(−→
∆†T i−→∆

)2
+λ5

(−→
∆†T i−→∆

)
φ†τ iφ

}
,

where summation over the SU(2) indices i is assumed. We choose to work in a basis in

which M∆ is real and diagonal and the covariant derivative Dµ in eq. (2.25) is given by

Dµ ≡ ∂µ − ig
−→
T
−→
Wµ − ig′Bµ

Y

2
, (2.26)

with
−→
T denoting the dimension-three representations of the SU(2) generators,

T1 =




0 0 0

0 0 −i

0 i 0


 , T2 =




0 0 i

0 0 0

−i 0 0


 , T3 =




0 −i 0

i 0 0

0 0 0


 . (2.27)

The Lagrangian expressed in terms of the charge components of the
−→
∆ field can be found

below, in eq. (4.16). Consider the limit in which the triplets are heavy, M∆ ≫ v. To solve

the equation of motion for ∆α in eq. (2.25) and find the dominant terms of the effective

low-energy Lagrangian up to d = 6 operators, it suffices to solve the problem perturbatively

in the quartic couplings of
−→
∆, λ2 and λ4. At zero order, it results:

∆α =
[
(Dµ)2 + λ5

−→
T φ†−→τ φ +

(
M∆

2 + λ3

(
φ†φ

))
.1isospin

]−1

αβ

[
µ∗

∆φ̃†τβφ + ℓLY †
∆τβ ℓ̃L

]
.

(2.28)

2.2.1 Dimension 4 and 5 operators

Expanding now the effective Lagrangian — using eq. (2.28) — in inverse powers of M∆,

one dimension four operator emerges:

δLd=4 =
|µ∆|2
M2

∆

(
φ̃†−→τ φ

) (
φ†−→τ φ̃

)
= 2

|µ∆|2
M2

∆

(
φ†φ

)2
. (2.29)

We also obtain δLd=5 as given in eq. (1.2), with operator coefficients given by the matrix

cd=5 = 4Y∆
µ∆

M2
∆

, (2.30)
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which at low energies leads to a light neutrino Majorana mass matrix of the form

mν = −2Y∆v2 µ∆

M2
∆

. (2.31)

Notice that neutrino masses turn out to be proportional to both Y∆ and µ∆, see figure 1.

This is as expected from the Lagrangian, eq. (2.25), where the breaking of lepton num-

ber symmetry L results precisely from the simultaneous presence of the Yukawa and µ∆

couplings.4 It is important that, unlike for the fermionic Seesaw theories, the light neu-

trino mass matrix in eq. (2.31) is only linearly dependent on the Yukawa coupling Y∆.

This means that the putative determination of the d = 5 operator coefficients gives a di-

rect access to the fundamental parameters Y∆ of the high-energy theory, up to an overall

scale µ∆/M2
∆. We will analyze in section 4 the experimental access to µ∆/M2

∆ and to the

elements of Y∆.

2.2.2 Dimension 6 operators

From eq. (2.28), the d = 6 effective Lagrangian can also be obtained,

δL∆
d=6 = δL4F + δLφD + δL6φ , (2.32)

where




δL4F = 1
M∆

2

(
ℓ̃L Y∆

−→τ ℓL

) (
ℓL
−→τ Y †

∆ ℓ̃L

)

δL6φ = −2 (λ3 + λ5)
|µ∆|2
M4

∆

(
φ†φ

)3

δLφD = |µ∆|2
M4

∆

(
φ†−→τ φ̃

)(←−
Dµ

−→
Dµ

)(
φ̃†−→τ φ

) , (2.33)

with the covariant derivative expressed in terms of (3×3) SU(2) generators, as in eq. (2.26).5

Two of these operators can be rewritten in a more familiar form. After Fierz transforma-

tion, δL4F can be expressed as

δL4F = − 1

M2
∆

Y∆ijY∆
†
αβ

(
ℓLβγµℓLi

) (
ℓLαγµℓLj

)
, (2.34)

while the last operator in eq. (2.33) can be recast as a combination of other operators which

have been extensively studied in the literature (e.g. [3]),

δLφD = 4
|µ∆|2
M4

∆

(
φ†φ

) [
(Dµφ)† (Dµφ)

]
+ 4

|µ∆|2
M4

∆

[
φ†Dµφ

]† [
φ†Dµφ

]
, (2.35)

where the covariant derivative is meant to be expressed in terms of Pauli matrices,

Dµ = ∂µ − ig
τa

2
Waµ − ig′Bµ

Y

2
. (2.36)

4In the language of the full theory, this mass results when the neutral component of ∆ acquires a vev

< ∆0 >≡ u/
√

2 = µ∆v2/(
√

2M2

∆), leading to a Majorana mass matrix for the SM neutrinos, mν = −2Y∆ u.
5The first of these operators has already been derived in [12].
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2.2.3 Renormalization scheme

Four parameters of the SM are relevant to our discussions (in addition to fermion masses):

g, g′, v and λ, the latter denoting the quartic self-coupling of the Higgs field,

V = −µ2
φ |φ|2 + λ |φ|4 . (2.37)

To constrain the first three parameters, we will work in the Z-scheme [13], that is, we will

use as input parameters the very-well determined experimental values of the fine structure

constant α — as determined from Thompson scattering6 — the Fermi constant GF — as

extracted from the muon decay rate by the removal of SM process-dependent radiative

corrections — and the very precise measurement of MZ [14].

The value of α is not affected by the presence of a scalar triplet, unlike the other

parameters. MZ gets a correction from δLφD in eq. (2.33)

δM2
Z

M2
Z

= 2v2 |µ∆|2
M4

∆

. (2.38)

Similarly, the 4-fermion operator δL4F affects the extraction of the value of the Fermi

constant from muon decay. Defining, as it is customary, this constant as the coefficient in

−4GF√
2

(
ℓLνβ

γµℓLµ

) (
ℓLeγµℓLνα

)
, (2.39)

it is easily seen that δL4F in eq. (2.34) induces in turn a shift with respect to the “Standard

Model definition” GSM
F = 1/(

√
2v2),7 which affects the value extracted from muon decay,

δGF =
1√

2M2
∆

|Y∆eµ |2 (2.40)

GF = GSM
F + δGF . (2.41)

The quartic self-coupling of the Higgs field is also renormalized by the dimension four

operator obtained in the effective theory, eq. (2.29),

δλ = −2
|µ∆|2
M2

∆

, (2.42)

influencing the location of the minimum of the Higgs potential. Another d = 6 operators,

δL6φ in eq. (2.33), also modifies the Higgs potential, which all in all becomes

V = −µ2
φ |φ|2 + (λ + δλ) |φ|4 + 2 (λ3 + λ5)

|µ∆|2
M4

∆

|φ|6 , (2.43)

inducing a shift in the vaccuum expectation value of the Higgs field,

δv2

v2
= −3v2 |µ∆|2

M4
∆

(λ3 + λ5)

λ + δλ
. (2.44)

6An even more precise determination is now available from g − 2 of the electron [14].
7Note that with a scalar triplet 1

2v2 6= g2

8M2

W

due to the scalar triplet induced MW shift, see below.
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Using all these renormalized parameters, in section 4.2 we will consider the deviations —

with respect to the SM predictions — induced by the new physics on the values taken by

a variety of physical observables.

Finally, as regards the relative number of parameters in the high and low energy

theories, the inclusion in the latter of only the d = 5 and d = 6 operators above does not

suffice to match the number of free parameters of the full scalar-triplet Seesaw theory, as

can be easily deduced from the comparison of eq. (2.25) with eqs. (2.32) and (2.33). Up to

d = 8 operators would have to be considered for this purpose, which is beyond the scope

of the present work.

2.3 Fermionic triplets: type III seesaw

Consider now the SM field content extended by the only addition of fermions which are

triplets of SU(2) with zero hypercharge, hereafter denoted by ~Σ, where the vectorial char-

acter refers to its three SU(2)-components, ~Σ = (Σ1,Σ2,Σ3). Being ~Σ in the adjoint

representation of the gauge group, its Majorana mass term is gauge invariant and the

interactions are described by the Lagrangian

LΣ = i ~ΣRD/ ~ΣR −
[

1

2
~ΣRMΣ

~Σc
R + ~ΣRYΣ(φ̃†~τℓL) + h.c.

]
. (2.45)

In this equation, the covariant derivative is given by eqs. (2.26) and (2.27) and the three

SU(2)-components of the field ~Σ have (identical) Majorana mass terms. They are not

eigenstates of the electric charge, which would be given instead by the combinations

Σ± ≡ Σ1 ∓ iΣ2

√
2

, Σ0 ≡ Σ3 . (2.46)

We will work throughout in a basis in which MΣ is a diagonal matrix in generation space.

The Yukawa coupling YΣ in eq. (2.45) is then a general matrix in generation space. After

electroweak symmetry breaking, this term induces Majorana neutrino masses for the left-

handed neutrino fields of the SM through the exchange of ~Σ particles, see figure 1.

2.3.1 Dimension 5 operator

Solving the equations of motion, it results that

~ΣR = PR [iD/ − MΣ]−1
[
Y ∗

Σφ†~τ ℓ̃L + YΣφ̃†~τℓL

]

= − 1

MΣ
Y ∗

Σφ†~τ ℓ̃L − 1

M †
Σ

iD/
1

MΣ
YΣφ̃†~τℓL + O

(
1

M3
Σ

)
, (2.47)

where i, j are SU(2) indices, i, j = 1, 2, 3. This allows to obtain the d = 5 operator in

eq. (1.2), with coefficient matrix given in this case by

cd=5 = Y T
Σ

1

MΣ
YΣ , (2.48)

which leads at low energies to a light neutrino Majorana mass matrix of the form

mν = −v2

2
Y T

Σ

1

MΣ
YΣ . (2.49)
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2.3.2 Dimension 6 operator

At the next order in the effective Lagrangian, we obtain a unique operator:8

δLd=6 = cd=6
αβ

(
ℓLα~τφ̃

)
iD/

(
φ̃†~τℓLβ

)
, (2.50)

where the d = 6 operator coefficients are given in terms of the parameters of the high-energy

Seesaw theory by

cd=6 = Y †
Σ

1

M †
Σ

1

MΣ
YΣ . (2.51)

Notice the large parallelism between the results for this Seesaw scenario mediated by

fermionic triplets and those for the minimal Seesaw based on the exchange of fermionic

singlets, eqs. (2.4) and (2.6)–(2.7). The main difference is that, now, in the d = 6 operator

in eq. (2.50) the interaction terms in the covariant derivative are active, as the quantities

in brackets are SU(2) triplets, which amounts to a richer interaction pattern.

A first consequence is that, when the Higgs doublet acquires a vacuum expectation

value, the d = 6 operator corrects both the d = 4 kinetic energy terms of light leptons and

their couplings to W bosons, while no corrections to the hypercharge boson Bµ appeared,

because the combinations in brackets in eq. (2.50) have zero hypercharge. After electroweak

symmetry breaking, the part of the effective Lagrangian concerning leptons is, in the flavour

basis,

Ld≤6
leptons = iνLα∂/

(
δαβ + ǫΣ

αβ

)
νLβ + ilLα∂/

(
δαβ + 2ǫΣ

αβ

)
lLβ + ilRα∂/lRα

−1

2

[
νL

c
α mν αβ νLβ + h.c.

]
−

[
lRα ml αβ lLβ + h.c.

]

+
1√
2
g

[
lLαW/ − (

δαβ + 2ǫΣ
αβ

)
νLβ + h.c.

]
− g

2
lLαW/ 3

(
δαβ + 4ǫΣ

αβ

)
lLβ

+
g

2
νLαW/ 3νLα − g′

2
lLαB/ lLβ − g′

2
νLαB/ νLα , (2.52)

where

ǫΣ ≡ v2

2
cd=6 , (2.53)

with cd=6 as defined in eq. (2.51) and ml denoting the charged lepton mass matrix. We

assume hereafter a choice of basis in which both ml and MΣ are diagonal. The neutrino and

charged lepton fields need now to be normalized in order to acquire canonically normalized

kinetic terms. At order 1/M2, i.e. linear in the parameters ǫΣ
αβ , the redefinitions

νLα → ν ′
Lα ≡

(
δαβ +

1

2
ǫΣ
αβ

)
νLβ ,

lLα → l′Lα ≡
(
δαβ + ǫΣ

αβ

)
lLβ , (2.54)

8We thank S. Antusch for helping to clarify the derivation of this operator in an early stage.
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results in a Lagrangian in the flavour basis which, at order O(1/M2), takes the form (primes

on the fields will be disregarded),

Ld≤6
leptons = iνLα∂/νLα + ilLα∂/lLα + ilRα∂/lRα − 1

2

[
νL

c
α m′

ναβ νLβ + h.c.
]

−
[
lRα m′

l αβ lLβ + h.c.
]
+ LCC + LNC + Lem , (2.55)

where m′
ν ≡ (1 − ǫ∗/2)mν(1 − ǫ/2), m′

l ≡ ml(1 − ǫ) and

LCC =
g√
2
lLαW/ −

(
δαβ +

1

2
ǫΣ
αβ

)
νLβ + h.c. , (2.56)

LNC =
g

cosθW

{
1

2

[
νLαγµ

(
δαβ − ǫΣ

αβ

)
νLβ − lLαγµ

(
δαβ + 2ǫΣ

αβ

)
lLβ

]
− sin2θW Jem

µ

}
Zµ ,

Lem = eJem
µ Aµ ,

where Jem
µ = −lγµl is the electromagnetic current. We can finally rotate to the basis in

which both the lepton kinetic energies and their mass matrices are diagonalized (for details

see appendix A),

Ld≤6
leptons =

1

2
νi

(
i∂/ − mdiag

ν i

)
νi +

1

2
li

(
i∂/ − mdiag

l i

)
li + LCC + LNC + Lem . (2.57)

A non-unitary mixing matrix N replaces now the usual unitary UPMNS matrix in the

charged current couplings contained in eq. (2.57), because of the flavour-dependent field

rescaling involved, while the couplings to the Z boson acquire also a non-unitary mixing

pattern,

J−CC
µ ≡ lL γµ N ν, (2.58)

J3
µ(neutrinos) ≡ 1

2
ν γµ(N † N)−1 ν , (2.59)

J3
µ(leptons) ≡ 1

2
l γµ(NN †)2 l. (2.60)

The non-unitary mixing matrix N is a function of the d = 6 coefficient matrix

N ≡ Ω U l
L
†
(

1 +
1

2
ǫΣ

)
Uν , (2.61)

where, once again, Ω ≡ diag(eiω1 , eiω2 , eiω3) reabsorbs three unphysical phases in the def-

inition of the charged lepton fields, and the matrices Uν and U l
L diagonalize the effective

leptonic mass matrices,9 mdiag
ν ≡ UνT mν Uν ,mdiag

l ≡ U l
R
†
ml (1− ǫ)U l

L (see appendix A).

When the flavour basis chosen is such that both U l
L and Ω are equal to the identity matrix,

and taking into account that Uν does not receive corrections from cd=6 at O(1/M2
Σ) , N

simplifies to

N ≡
(

1 +
1

2
ǫΣ

)
UPMNS (2.62)

9Within the order ǫΣ used throughout, the mass eigenvalues are defined at first order in it and thus

the eigenvectors should be consistently defined at order zero in that expansion. As a consequence, any

representation of the leptonic matrices U l
L,R which diagonalizes the mass matrix has to be physically

equivalent to the identity.
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and, consequently, NN † = 1 + ǫΣ, N †N = U †
PMNS(1 + ǫΣ)UPMNS . These expressions can

be compared with the equivalent ones for the singlet-fermion Seesaw theory, eq. (2.15) and

below it.

Whatever the basis, the currents in eqs. (2.58)–(2.60) can also be compared with

the corresponding ones for the singlet-fermion Seesaw theory, eq. (2.16) and (2.17). A

non-unitary mixing pattern has appeared in both cases, although the modified Z-neutrino

couplings differ and non-unitary flavour mixing is now also present in the Z-charged lepton

couplings.

An important consequence of the flavour-changing W and Z-lepton couplings is their

contribution to muon decay into electron plus missing energy, which modifies the definition

of GF as extracted from muon decay, as follows:

GF = GSM
F

√
(NN †)ee(NN †)µµ +

3

4
[(NN †)2eµ]2 ∼ GSM

F

√
(NN †)ee(NN †)µµ , (2.63)

where higher order correction, O((ǫΣ)2), have been neglected in the last step. Its phe-

nomenological consequences will be explored in section (4.3).

Finally, in analogy with the case of the fermionic singlet Seesaw theory, it is remarkable

that departures from unitarity of the leptonic mixing matrix can be now directly related

to the d = 6 operator coefficients and thus to combinations of the high-energy parameters,

|NN † − 1|αβ = |ǫΣ| =
v2

2
|cd=6|αβ =

v2

2

∣∣∣∣Y
†
Σ

1

M †
Σ

1

MΣ
YΣ

∣∣∣∣
αβ

. (2.64)

Once again, in the flavour basis in which Ω and U l
L equal the indentity matrix, the absolute-

value bars in this equation can be dropped. In section 4.3 the present numerical constraints

on |cd=6| will be explored.

2.3.3 Parameter counting

Finally, it can be shown that the low-energy effective theory, including only the d = 5 and

d = 6 operators, contains in this case an equal (greater) number of real and imaginary

parameters as the high-energy Seesaw model, when the number of right-handed fermionic

triplet generations in the Seesaw theory is equal to (less than) the number of generations of

Standard Model fermions. The demonstration is equivalent to that in ref. [11] for the case

of singlet-fermion Seesaw theory. The kinetic energy terms in the Lagrangian, eq. (2.45),

are invariant under the chiral transformations

ℓL → VℓℓL ,

eR → VeeR , (2.65)

ΣR → VΣΣR ,

where the V ’s are unitary transformations. Consider first the complete theory with n lepton

families and n’ right-handed fermionic triplets. The Yukawa terms and the Majorana mass

term are not invariant under such chiral symmetry, but invariance can be recovered if they
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Seesaw Model

Matrix Moduli Phases

Ye n × n n × n

YΣ n × n′ n × n′

MΣ
n′(n′+1)

2
n′(n′+1)

2

Ve
n(n−1)

2
n(n+1)

2

Vℓ
n(n−1)

2
n(n+1)

2

VΣ
n′(n′−1)

2
n′(n′+1)

2

Nphys n + n′ + nn′ n(n′ − 1)

Table 1: Number of physical parameters, for n light and n′ heavy neutrino generations.

are considered as spurion fields transforming as

Ye → Y ′
e ≡ VℓYeV

†
e ,

YΣ → Y ′
Σ ≡ VΣYΣV †

ℓ , (2.66)

MΣ → M ′
Σ ≡ VΣMΣV t

Σ .

Counting how many physical parameters Nphys are needed to describe the Yukawa and

Majorana mass terms in the Seesaw Lagrangian is tantamount to counting how many

equivalence classes there exist with respect to these transformations. The result is given

by

Nphys = Norder − (NG − NH), (2.67)

where Norder is the total number of parameters contained in the Yukawa and Majorana

mass matrices, NG is the number of parameters contained in the matrices of the chiral

symmetry group G = U(n)ℓ ×U(n)e ×U(n′)N . NH is the number of parameters contained

in the matrices of the subgroup H of the chiral symmetry group which remains unbroken

by the Yukawa and Majorana mass matrices: in the present model there is no unbroken

subgroup H because of lepton number violation. table 1 summarizes the result for the high-

energy theory. This is to be compared with the effective low-energy Lagrangian including

operators of d ≤ 6. It is invariant under the chiral transformations only if

cd=5 → V ∗
ℓ cd=5V †

ℓ ,

cd=6 → Vℓc
d=6V †

ℓ . (2.68)

cd=5 is a complex symmetric matrix and cd=6 is a complex hermitian matrix and since the

dimension 5 operators breaks lepton number, there is no unbroken subgroup that remains.

The corresponding counting of parameters is shown in table 2, to be compared with that

in table 1 for the high-energy theory.

Thus, the determination of all d = 5 and d = 6 operator coefficients above would again

suffice a priori to determine all of the parameters of the high-energy Seesaw theory with
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Effective Theory (d ≤ 6)

Matrix Moduli Phases

Ye n × n n × n

cd=5 n(n+1)
2

n(n+1)
2

cd=6 n(n+1)
2

n(n−1)
2

Ve
n(n−1)

2
n(n+1)

2

Vℓ
n(n−1)

2
n(n+1)

2

Nphys n(n + 2) n(n − 1)

Table 2: Number of physical parameters, for n light lepton generations.

Effective Lagrangian Leff = ciOi

Model cd=5 cd=6
i Od=6

i

Fermionic Singlet Y T
N

1
MN

YN

(
Y †

N
1

M†
N

1
MN

YN

)

αβ

(
ℓLαφ̃

)
i∂/

(
φ̃†ℓLβ

)

1
M2

∆

Y∆αβY †
∆γδ

(
ℓ̃Lα

−→τ ℓLβ

)(
ℓLγ

−→τ ℓ̃Lδ

)

Scalar Triplet 4Y∆
µ∆

M2

∆

|µ∆|2
M4

∆

(
φ†−→τ φ̃

)(←−
Dµ

−→
Dµ

)(
φ̃†−→τ φ

)

−2 (λ3 + λ5)
|µ∆|2
M4

∆

(
φ†φ

)3

Fermionic Triplet Y T
Σ

1
MΣ

YΣ

(
Y †

Σ
1

M†
Σ

1
MΣ

YΣ

)

αβ

(
ℓLα

−→τ φ̃
)

iD/
(
φ̃†−→τ ℓLβ

)

Table 3: Coefficients of the d = 5 operator, cd=5, and d = 6 operators and their coefficients, cd=6,

in the three basic Seesaw theories.

two or three heavy neutrino generations. In consequence, for instance, the leptogenesis

rate could be written exclusively in terms of both operator coefficients [15].

2.4 Summary

To conclude this section, we have gathered in table 3 the d = 6 operators obtained for the

three basic Seesaw scenarios, together with the corresponding expressions for the elements

d = 6 coefficient matrices. The elements of d = 5 coefficient matrices are included as well.

3. Low scale seesaw M ∼ O(TeV )

3.1 Electroweak hierarchy problem

If the Seesaw scale is far above the electroweak scale, the theory clashes with the electroweak
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hierarchy problem, that is, the fact that data indicate a value for the Higgs mass of the

order of the electroweak scale, v ∼ O(100)GeV. Such a mass is unnaturally light if there is

new physics beyond the SM and at a higher scale, to which the Higgs boson is sensitive.

The three minimal scenarios considered in the previous section do face this problem if the

new scales are much larger than the electroweak scale v.

Indeed, for the Seesaw Type I, the one-loop contribution to the Higgs mass has been

computed long ago [16],

δm2
H = −Y †

NYN

16π2

[
2Λ2 + 2M2

N log
M2

N

Λ2

]
, (3.1)

while in the case of the scalar-triplet (type II), we find that the contribution is given by10

δm2
H =

1

16π2

[
3λ3

(
Λ2 − M2

∆ log
Λ2

M2
∆

)
− 12|µ∆|2 log

Λ2

M2
∆

]
, (3.2)

and, finally, for the fermionic-triplet Seesaw (type III), we obtain

δmH
2 = −3

Y †
ΣYΣ

16π2

[
2Λ2 + 2M2

Σ log
M2

Σ

Λ2

]
, (3.3)

where Λ is the regulator cutoff. In these equations, terms proportional to v2 and m2
H

have been neglected. eqs. (3.1)–(3.3) all show a quadratic sensitivity to the new scales

characteristic of Seesaw theories, implying that large fine-tunings would be necessary to

accommodate the experimental data if any of the new scales introduced is much larger

than v (or the Yukawa couplings are not extremely fine-tuned in Type I and III Seesaw).

For instance, imposing that the one-loop correction is not larger than the Higgs mass

itself, let’s say mH = 150 GeV for definiteness, MN and MΣ should be below ∼ 107 GeV for

Yukawa couplings of order m
1/2
ν M

1/2
N,Σ/v, while M∆ should be below a scale which depends

on λ3 and µ∆. In any case, for scales not much larger than the electroweak one, the

contribution of the Seesaw theory to the hierarchy problem would be obviously avoided.

As a by-product, new exciting physics signals would then be expected at present and future

experimental facilities.

The question we wish to analyze now is whether it is indeed possible that nature

has chosen the high energy scale M of the Seesaw scenario close to the electroweak scale,

rather than to the Grand Unified scale, with O(1) Yukawa couplings, without fine-tuning

the parameters and in particular the Yukawa couplings.

3.2 Direct lepton violation

After all, the analysis of the previous sections has shown that, while neutrino masses

result from a lepton-number odd d = 5 operator, other manifestations of the new physics

behind are encoded in lepton-number conserving d = 6 operators (as well as in higher

dimensional operators). As lepton number appears to be an approximate symmetry of

10No dependence on the quartic coupling λ5 of the Lagrangian eq. (2.25) appears, as the Higgs fields are

combined in this term in a triplet of SU(2), while the Higgs mass is a singlet.
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nature, it is natural to assume that it may be broken through small parameters — such

as those responsible for neutrino masses — while other beyond the SM effects of the high-

energy theory, which are lepton-number preserving, need not be strongly suppressed. The

choice of such a L-odd small parameter may be thus a natural one, as it corresponds to

the breaking of a symmetry and its value cannot be destabilized by other large scales of

the theory through radiative corrections, because by nature it can only be multiplicatively

renormalized.

Assume thus M (MN , M∆, MΣ) to be higher but not far from the TeV scale. The issue

is then whether it is possible to decouple and further suppress the coefficients of the d = 5

operators from those of the fermionic d = 6 operators, without appealing to fine-tunings

and cancellations in the Yukawa parameters or heavy mass matrices.11 If this is possible,

the tiny values of the neutrino masses could be accommodated, while the effects of the

those d = 6 operators — suppressed only as 1/M2 — would be close to observability.12

As a guideline to achieve such a scenario recall that, because Majorana neutrino masses

are forbidden in the SM, light neutrinos inheritate their Majorana character from a Majo-

rana source in the high-energy theory. This implies that light Majorana neutrino masses

have to vanish either when the new Majorana scale goes to infinity and the new physics

decouples, or proportionally to it. A quick look at table 3, together with the pattern

of operator coefficients found for the case of scalar-triplet mediated Seesaw mechanisms,

suggests the following ansatz :

When the breaking of L symmetry takes place in the full theory through a small mass

scale µ, distinct from the high-energy scale M ∼ O(TeV), µ ≪ M , the coefficient of the

d = 5 operator necessarily acquires an extra suppression in powers of µ/M , while the

fermionic d = 6 operators keep its unsuppressed 1/M2 dependence.

As an example, a typical decoupling pattern goes qualitatively as follows:

cd=5 = f(Y )
µ

M2
, (3.4)

cd=6 = g(Y )
1

|M |2 , (3.5)

where f and g are some functions of the Yukawa couplings, implying a light neutrino mass

matrix of the form

mν = −f(Y )v2

2

µ

M2
, (3.6)

while the effects of the d = 6 operator, eq. (3.5), are independent of µ and may be sizable

for generic Yukawa couplings, which may remain large and even O(1). Notice that such

dependence has already been found above for the minimal version of the scalar-triplet

mediated Seesaw scenario (with f ∼ Y∆, g ∼ Y †
∆Y∆, µ = µ∆), see eqs. (2.30) and (2.33),

11Although operators of dimension higher than six are increasingly relevant as the scale is lowered toward

the electroweak scale, an analysis restrained to the d = 5 and d = 6 operators should still convey the main

physical aspects, as long as the scale keeps being larger than O(v).
12Note that Ref. [17] studied the effects of various higher-order operators in a completely different context:

the dissociation of flavour violation scale and lepton number violation scale in extended theories, while we

focus on the dissociation of d=5 and d=6 operators characteristic of the minimal seesaw models.
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suggesting the possibility µ∆ ≪ M∆, Y∆ ∼ 1. We call this universal pattern direct lepton

violation, since the neutrino masses are proportional to the (small) lepton number violating

quantity µ, rather than inversely proportional to the large lepton number violating heavy

field mass.

Multiple seesaw models. Let us consider, as illustration and support of our general

ansatz, models existing in the literature and based on extensions of the type-I Seesaw

scenario with a low scale. The examples considered below can be straightforwardly applied

and extended to the type-III — triplet-fermion mediated — Seesaw scenarios. We are thus

interested in a class of models which, to lead to sufficiently suppressed neutrino masses and

large d = 6 operators, do not require any precise cancellations between the various (a priori

independent) entries of the singlet neutrino mass matrix and/or of the Yukawa matrix.13

The cases considered below just require that some of the entries of these mass matrices

carry Majorana character and are much smaller than other ones. For simplicity, only one

left-handed neutrino and two singlet fermions will be included in the analysis (νL, N1, N2).

For instance, in the “inverse Seesaw model” [19], the following texture is assumed:14




0 mD1
0

mD1
0 MN1

0 MN1
µ


 , (3.7)

where µ is a small Majorana mass, µ ≪ MN1
. All other entries in the matrix are of Dirac

character: for µ = 0, assigning L = 1,−1, 1 to νL, N1, N2 respectively, lepton number

is indeed conserved by the Lagrangian and no Majorana mass results. Expanding the

eigenvalues of eq. (3.7) in powers of µ/MN1
, a light eigenvalue is obtained:

mν =
m2

D1

MN1

µ

MN1

M2
N1

M2
N1

+ m2
D1

+ O(µ3) −→(mD1
≪MN1

)

m2
D1

MN1

µ

MN1

+ O(µ3) , (3.8)

where higher order terms have been neglected. As mD1
is a typical Dirac mass term,

mD1 ∼ Y1 v/
√

2 with Y1 a Yukawa coupling, eq. (3.8) shows that the neutrino mass is

suppressed by an extra factor µ/MN1
with respect to the result for the minimal type-I

Seesaw model, eq. (2.5), exactly as expected from the general argument above, see eq. (3.6):

mν ∼ µ
Y 2

1 v2

M2
1

. (3.9)

The smallness of neutrino masses, and the argument of no fine-tuning, do not require

tiny Yukawa couplings. For instance, if the Yukawa coupling Yν1
is of order unity, i.e.

mD1
= Yν1

v ∼ v, and if MN1
∼ 1 TeV, this requires µ/MN1

∼ 10−12. Similarly, for

MN1
∼ 1 TeV, a rather “large” Yukawa coupling of order 10−3 requires µ/MN1

∼ 10−6.

On the other hand, the d = 6 operator coefficient is independent of µ, as in eq. (3.5), and

13Consequently, we don’t consider cases such as, for example, that in ref. [18], based on the relation

YνY T
ν = 0 and (MN)ij = mNδij .

14We acknowledge interesting discussions on this topic with S. Antusch.

– 20 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
1

low-energy effects associated to it — such as non-unitary mixings in the weak currents and

other signals — could be discovered in the near future.

These results can be generalized to the case with the most general matrices which, with

large Yukawa couplings, still lead to vanishing ν masses form extra small entries, therefore

leading to suppressed d = 5 operator coefficients together with large d = 6 operator

coefficients. For instance, in the two N plus one ν case above, the most general Majorana

texture is the one in eq. (3.7) with an additional non-zero value for the 22 element. This can

be justified for instance in the context of extended models (see e.g. ref. [20]). A non-zero

22 entry has the interesting feature of being a source of lepton number violation without

inducing by itself neutrino masses: for µ = 0 the determinant still vanishes leading to

massless neutrinos. We will postpone the discussion of scenarios with a non-zero value for

that entry to appendix C , where a generalization to the 3 left-handed plus 3 right-handed

neutrino case can also be found. Analogous extensions of fermion-triplet mediated type-III

Seesaw models are straightforward. The interesting textures are just the same as in the

type I (that is, singlet-fermion Seesaw) scenario.

In conclusion, irrespective of whether the Seesaw mechanism results from the exchange

of heavy fermions or heavy scalars, to have large effects from d = 6 operators requires first

to lower the scale M toward the TeV range and second a decoupling of the values of the

d = 5 and d = 6 coefficients along the pattern developed above, i.e. eq. (3.4) and eq. (3.5).

This allows to account for the experimental values of neutrino masses without neither fine-

tuning the Yukawa couplings nor assuming cancellations in combinations of them. For a

Seesaw scale of O(TeV), observable effects are then possible. The next section — which

deals with the phenomenological aspects of Seesaw models including bounds for any value

of M — will focus on those effects.

4. Phenomenology of seesaw models

4.1 Fermionic singlets

The models where the heavy fields are SM singlets are most difficult to test, as they lead

to fewer and rarer experimental signals at low energies, even for low Seesaw scales. There

exist, though, bounds on combinations of the Yukawa couplings which can be saturated

for the type-I inverse Seesaw and similar extensions, as well as for models with extra

dimensions containing Kaluza-Klein replicas which are SM singlets [21].

The bounds stem from important indirect signals which may be induced from the fact

that the leptonic mass matrix appearing in the charged current is no longer unitary, see

section 2.1. This subject, as well as the determination of the corresponding bounds on

|NN †|αβ , has been studied at length recently [10]. In a nutshell, deviations from the values

expected in a unitary analysis are constrained to be of order 1% or smaller. Indeed, a

global fit to the constraints resulting from W decays, Z decays, universality tests and rare

lepton decays proved [10] that the NN † elements agree with those expected in the unitary
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case, within a precision better than a few percent, at the 90% CL:

|NN †| ≈




0.994 ± 0.005 < 7.0 · 10−5 < 1.6 · 10−2

< 7.0 · 10−5 0.995 ± 0.005 < 1.0 · 10−2

< 1.6 · 10−2 < 1.0 · 10−2 0.995 ± 0.005


 . (4.1)

The off-diagonal constraints in eq. (4.1) result from the experimental bounds existing on

the radiative processes µ → eγ, τ → eγ and τ → µγ, while the diagonal ones come from the

combined analysis of all other processes mentioned above. Using now the relation obtained

in eq. (2.19) between the elements of the coefficient matrix cd=6 and those of NN †, it

follows that

v2

2
|cd=6|αβ =

v2

2

∣∣∣∣Y
†
N

1

|MN |2 YN

∣∣∣∣
αβ

.




10−2 7.0 · 10−5 1.6 · 10−2

7.0 · 10−5 10−2 1.0 · 10−2

1.6 · 10−2 1.0 · 10−2 10−2


 . (4.2)

When obtaining the numerical bounds in eqs. (4.1) and (4.2), the effective theory was

used to compute µ → eγ and τ → µγ, that is, the analysis was done in terms of cd=5

and cd=6. It is to be noticed that the computation of such one-loop transitions in the

effective theory does not coincide exactly with that done in the full theory (i.e. type I

Seesaw model), as higher dimension effective operators have to be taken into account in

the matching between both. Numerically, the differences are of O(1) and irrelevant for the

precision attempted here, though. Furthermore, when computing these l1 → l2γ transitions

- here and in the chapters to follow - we will not take into account the electromagnetic

radiative corrections [22], as their inclusion would correspond to a two-loop calculation and

numerically they will not change the order of magnitude of the bounds obtained.

Notice that the bounds above are valid for any value of MN and apply to any (type I)

Seesaw theory. In consequence, they apply to the inverse Seesaw model considered above,

in which MN could be near the TeV scale while the Yukawa couplings may be large, and

signals could appear at the edge of the experimental limits above. New signals of CP-

violation in neutrino oscillations, sensitive to the phases of cd=6 may also be observable in

future facilities [23].

As for direct detection of the heavy singlets in future accelerators in case MN ∼
1TeV, several studies exist of the associated production of the heavy singlets and the

Higgs particle, with difficult prospects for a positive signal [24].

4.2 Scalar triplets

Using the experimental values for the renormalized parameters α, GF and MZ as defined

in the Z-scheme in section 2.2, we will now consider deviations from the SM predictions

for a set of observables.

4.2.1 MW and the ρ parameter

The operator LφD induces corrections to the predicted value of MW and to the ρ param-

eter, through the term 4 |µ∆|2
|M∆|4

[
φ†Dµφ

]† [
φ†Dµφ

]
in eq. (2.35). When the ρ parameter is
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extracted from data using only hadronic transitions,15 its predicted value is shifted from

the SM prediction by

δρhad = −|µ∆|2
M4

∆

√
2

GF
, (4.3)

a result previously obtained in the literature [25].

We find that the mass of the W boson is also predicted to acquire a shift from both

LφD and L4F in eq. (2.33), which is given by

δM2
W = − M2

W

2MW
2 − M2

Z

[
δρhad M2

W − δGF

GF
(M2

W − M2
Z)

]
(4.4)

= − M2
W

2MW
2 − M2

Z

[
|µ∆|2
M4

∆

M2
W

GF

√
2

− M2
W − M2

Z√
2GF M2

∆

Y∆eµY †
∆eµ

]
.

In this equation, MW is to be identified with the SM prediction for the W -boson mass

in the Z-scheme,

(MSM
W )2 =

M2
Z

2

(
1 +

√
1 − 4πα√

2GF M2
Z

)
1

(1 − ∆r)
, (4.5)

where ∆r accounts for the dominant SM one-loop radiative corrections16, and GF is ex-

tracted from muon decay, see eqs. (2.40) and (2.41).

The very precise experimental determination of the W boson mass allows to set strin-

gent bounds on both terms in eq. (4.4), barring extreme cancellations between both. From

the difference between the experimental value and the SM prediction of MW obtained in

the Z-scheme (MSM
W = (80.4887 ± 0.0515) GeV) we obtain:

|Y∆µe|4 = (0.00023 ± 0.00109)

(
M∆

1 TeV

)−4

, (4.6)

and

−v2 |µ∆|2
M∆

4 = 0.0001368 ± 0.00032, or (4.7)

|µ∆|
M2

∆

< 8.7 × 10−2 TeV−1 . (4.8)

Notice however that the hadronic data on the ρ parameter allow to independently constraint

µ∆/M2
∆. As an estimate, taking at face value the average experimental value of the ρ

parameter (ρ = 1.0002±0.0007
0.0004) as if it were indeed dominated by the hadronic contributions

— which do not depend on the leptonic Yukawa couplings — it would follow that

−v2 |µ∆|2
M∆

4 < 0.0001 ±0.00035
0.0002 . (4.9)

15It is customary to extract the value of ρ from a global fit to data, including simultaneously hadronic

and leptonic transitions; if the latter were considered in the analysis, further corrections would appear in

δρ, induced by δGF in eq. (2.40).
16While these corrections are important when compared to the total value of MW , they can be dropped

in eq. (4.4), as we work at first order in all corrections. ,PDG
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The neutrino masses in eq. (2.31) are proportional to this ratio multiplied by Y∆. For

instance, mν ∼ 1eV and Y∆ ∼ O(1) requires µ∆/M2
∆ ∼ 10−11, well below the bound in

eq. (4.8), while the lower limit of the bound can be saturated for values of Y∆ ∼ 10−7.

4.2.2 µ → eee and τ → 3l decays

δL4F in eqs. (2.33) and (2.34) induces exotic four-lepton couplings contributing to lepton-

flavor violating processes. Notice that this operator does not depend on the scale µ∆, so

that the discussion is independent of it. Besides its impact on the determination of GF

from muon decay, eqs. (2.40) and (2.41), it modifies the branching ratios for rare leptonic

decays. The constraints implied by the present experimental bounds on these processes

have been studied in models with a scalar triplet in refs. [26]–[35].

Important decays are µ− → e+e−e− and τ → 3l, considered in the full theory with a

scalar triplet in refs. [27, 28] and from the generic leptonic d = 6 effective operator δL4F

in Refs.[36]–[39]. In terms of the coefficient c4F
αβγδ of the leptonic d = 6 operator coefficient

L4F in eq. (2.33),

c4F
αβγδ ≡ 1

M2
∆

Y∆αβ
Y †

∆γδ
, (4.10)

we obtain

Γ(µ− → e+e−e−) =
m5

µ

192π3

∣∣c4F
µeee

∣∣2 =
m5

µ

192π3

1

M4
∆

|Y∆µe |2|Y∆ee |2 (4.11)

which gives

Br(µ− → e+e−e−) ≃ Γ(µ− → e+e−e−)

Γ(µ− → e−νµνe)
=

∣∣c4F
µeee

∣∣2

G2
F

=
1

M4
∆G2

F

|Y∆eµ |2|Y∆ee |2, (4.12)

Similarly we obtain

Γ(τ− → l+i l−j l−j ) =
m5

τ

192π3

∣∣c4F
τijj

∣∣ =
m5

τ

192π3

1

M4
∆

|Y∆τi
|2|Y∆jj

|2 (4.13)

for any i and j, while

Γ(τ− → l+i l−j l−k ) =
m5

τ

96π3

∣∣c4F
τijk

∣∣ =
m5

τ

96π3

1

M4
∆

|Y∆τi
|2|Y∆jk

|2 (4.14)

for any i, j, k with j 6= k. Using all experimental branching ratios or upper limits on

branching ratios as given in ref. [14], the corresponding bounds on the Yukawa couplings

are given in table 4 .

For Yukawa couplings of order unity, the present non-observation of those LFV transi-

tions, in particular of the most stringent one, µ → eee, implies a lower bound on the scalar

triplet Seesaw scale,

M∆ ≥ 294 TeV , for Y∆ ∼ O(1) . (4.15)
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Process Constraint on Bound

(
×

(
M∆

1TeV

)2
)

MW |Y∆µe|2 < 7.3 × 10−2

µ− → e+e−e− |Y∆µe||Y∆ee| < 1.2 × 10−5

τ− → e+e−e− |Y∆τe||Y∆ee| < 1.3 × 10−2

τ− → µ+µ−µ− |Y∆τµ||Y∆µµ| < 1.2 × 10−2

τ− → µ+e−e− |Y∆τµ||Y∆ee| < 9.3 × 10−3

τ− → e+µ−µ− |Y∆τe||Y∆µµ| < 1.0 × 10−2

τ− → µ+µ−e− |Y∆τµ||Y∆µe| < 1.8 × 10−2

τ− → e+e−µ− |Y∆τe||Y∆µe| < 1.7 × 10−2

µ → eγ |Σl=e,µ,τY∆
†
lµY∆el| < 4.7 × 10−3

τ → eγ |Σl=e,µ,τY∆
†
lτY∆el| < 1.05

τ → µγ |Σl=e,µ,τY∆
†
lτY∆µl| < 8.4 × 10−1

Table 4: Bounds on Y∆ij from MW , eq. (4.6), from tree level ℓ−1 → ℓ−2 ℓ+
3 ℓ−4 decays and from one

loop l1 → l2γ processes.

4.2.3 Complete lagrangian and l1 → l2γ

It is useful to consider also the bounds which arise from the radiative decays ℓ1 → ℓ2γ,

although these processes cannot be obtained completely from the d = 6 operators because

they are one-loop processes. Consider then instead the full high-energy Lagrangian for the

scalar triplet in eq. (4.16), expanded into charge components:

L∆ = Dµ∆0∗Dµ∆0 + Dµ∆+Dµ∆− + Dµ∆++Dµ∆−−

+
{
(lL

cY∆νL)∆+ + (νL
cY∆eL)∆+ +

√
2(lL

cY∆lL)∆++ −
√

2(νL
cY∆νL)∆0 + h.c.

}

+
{
µ∆

(
2φ0φ+∆− +

√
2φ0φ0∆0∗ −

√
2φ+φ0∆−−

)
+ h.c.

}

−M∆
2
(
∆0 ∗∆0 + ∆−∆+ + ∆−−∆++

)
− λ2

2

(
∆0 ∗∆0 + ∆−∆+ + ∆−−∆++

)2

−λ3(φ
−φ++φ0∗φ0)

(
∆0 ∗∆0+∆−∆++∆−−∆++

)
−λ4

[
1

2
(∆0 ∗∆0)2+

1

2
(∆++∆−−)2

+∆++∆−−(∆+∆− − ∆0 ∗∆0) + ∆+∆−∆0 ∗∆0 −
{
∆++∆−∆−∆0 + h.c.

}]

−λ5

[
(∆++∆−−−∆0 ∗∆0)(φ+φ−−φ0 ∗φ0)−

√
2

{
φ−φ0(∆++∆−−∆0 ∗∆+) + h.c.

}]
.

µ → eγ, τ → eγ,τ → µγ. Radiative processes are due to the exchange between lepton

fields of both the ∆++ and ∆+ fields, as given in eq. (4.16), and the branching ratios
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Combined bounds

Process Yukawa Bound

(
×

(
M∆

1TeV

)4
)

µ → eγ
∣∣Y∆

†
µµY∆µe + Y∆

†
τµY∆τe

∣∣ < 4.7 × 10−3

τ → eγ
∣∣Y∆

†
ττY∆τe

∣∣ < 1.05

τ → µγ
∣∣Y∆

†
ττY∆τµ

∣∣ < 8.4 × 10−1

Table 5: Bounds on combinations of Y∆ij .

read [29, 31, 34]:

Br(l1 → l2γ) =
α

48π

25

16

∣∣∣∣Σl Y∆
†
ll1

Y∆l2l

∣∣∣∣
2

G2
F M4

∆

Br(l1 → eν1ν̄e) . (4.16)

The corresponding bounds are also given in table 4. Combining all bounds of this table,

we have obtained new bounds for combinations of Yukawa parameters, not considered

previously in the literature and gathered in table 5. They show that, for low values of the

Seesaw scale, the Yukawa couplings may be of O(1), while they should be sizeably smaller

by up to 2 orders of magnitude for some specific flavours, for an O(TeV) Seesaw scale.

4.2.4 Other constraints

There are also other bounds which arise from other processes, from Bhabha scattering [27,

32, 34] (leading to the bound |Y∆ee | < 1.0 · (M∆/1 TeV)) , from muonium to antimuonium

conversion [27, 35] (leading to the bound |Y∆ee ||Y∆µµ | < 0.1 · (M∆/1 TeV)2), and from the

anomalous magnetic moment of the muon. The latter constraint comes from the fact that

the doubly charged scalar ∆±± as well as the simply charged ∆± induce a shift in the

anomalous magnetic moment of the muon [32, 35] ,

δ(aµ) = −
m2

µ

3πM2
∆

∑

j=e,µ′τ

|Y∆µj
|2 , δ(aµ) = −

m2
µ

24πM2
∆

∑

j=e,µ′τ

|Y∆µj
|2 , (4.17)

respectively. This contribution has opposite sign with respect to the observed deviation.

Taking for instance δ(aµ) < 20 × 10−10 we get
∑

j=e,µ′τ |Y∆µj
|2 < 1.9 · (M∆/1 TeV)2.

4.2.5 Collider signatures of scalar triplets

Scalar triplet Seesaw opens the possibility of observing new signals at present and/or

future facilities. For instance, for Y∆ ∼ O(1), a positive observation of µ → eγ by the

MEG experiment [40] (which aims to achieve 10−13 sensitivity for the branching ratio)

would require

15 TeV < M∆ < 50 TeV , (4.18)

while Y∆ ∼ O(10−2) would require 0.15 TeV < M∆ < 0.5 TeV.
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If M∆ turns out to be as low as O(TeV), the non-vanishing electroweak charge of the−→
∆ field offers the possibility of clean signals in hadronic accelerators (Tevatron, LHC).

The production (or associated production) of ∆++ and ∆−− particles, and their subse-

quent decay in pairs of same-sign leptons, would constitute striking signals, free from SM

backgrounds [41, 42]. A lower bound on the mass of ∆±± of the order of 136 GeV has

been obtained at CDF [43]. Assuming that a boson with those characteristics is indeed

observed in an accelerator, one still needs to ascertain whether a scalar-mediated Seesaw

mechanism is indeed at work. For that, and as a first step, it is necessary to measure and

disentangle the Yukawa couplings appearing in tables 4 and 5. In order to extract values

for the individual Y∆ij, it would be necessary to observe in addition at least three lepton

flavor violating processes.

The first term in the Lagrangian in eq. (2.25) generates tree-level vertices ∆±±W±W±

and ∆±W∓Z, which would be detected by observing for instance ∆++ → W+W+,

W+W+ → ∆++ , Z∗ → ∆+W−, or ∆+ → ZW+. The analysis of some of these pro-

cesses has already been covered in [44, 45], for the LHC. Once produced by Drell-Yann

processes (q̄q → ∆−−∆++), with production cross-section given in refs. [41, 42], the ∆++

(∆−−) can decay into pairs of W s of the same charge (∆∓∓ → W∓W∓), for which the

decay rate is proportional to v2 M3

∆

M2

W

|µ∆|2
M4

∆

, or into leptons li, lj of the same charge, with a

decay rate proportional to M∆|Y∆ij|2. Finally, the ∆++ (∆−−) particle can also decay into

a charged Higgs and an off-shell W gauge boson, as in ∆−− → φ−W ∗−. The decay rate of

the latter process is suppressed when compared to the previous ones, unless the λ5 coupling

in eq. (2.25) takes an unnaturally large value [44, 46]. Due to the constraint obtained in

eq. (4.8), the process ∆−− → W−W− will be suppressed and the only relevant channel in

our scenario will be ∆±± → l±l±, which will be background-free. The related branching

ratio will give access to |Y∆ij|, which is directly related to neutrino mass matrix elements

up to the global factor |µ∆|
M2

∆

, i.e. to the effective theory coefficient cd=5 in eq. (2.30).

Other interesting signals can be also searched for in accelerators. L6φ (eq. (2.33)) and

the first term of LφD in eq. (2.35), besides modifying the Higgs potential and renormalizing

the scalar kinetic energy term, induce new couplings: HWW,HZZ,HHWW,HHZZ, H3

and H4 -where H stands for the physical Higgs-. Consequently, the Higgs production cross

sections at the future facilities ILC and CLIC [47] get corrections. Nevertheless, the strong

limit in eq. (4.8) precludes observable effects, except maybe from L6φ for very large values

of λ3 and/or λ5 [47].

Similarly, LφD also affects Higgs physics. Its impact on the Higgs decay branching

ratios has been analyzed [48], although again the bound from the ρ parameter discussed

above excludes observation in the planned future facilities such as ILC.

4.3 Fermionic triplets

We have argued that non-unitary flavour-changing matrices are to be expected in this

case for the couplings of light leptons to the W and Z gauge boson, see eqs. (2.58)–(2.60).

The putative departures from unitarity can be re-expressed directly in terms of the d =

6 operator coefficients, that is to say in terms of the Yukawa couplings, see eq. (2.64).
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Specifically, notice that17

|NN † − 1| = |ǫΣ| , (4.19)

(N †N)−1 = U †
ν (1 − ǫΣ)Uν ∼ 1 − U †

PMNS ǫΣ UPMNS . (4.20)

For values of MΣ close to the electroweak scale, the deviations of these quantities from their

standard values can be at the edge of the present experimental bounds on non-unitarity.

Taking into account the shift induced on GF as extracted from muon decay, eq. (2.63) for

the effective theory, we proceed to compute below the departures predicted on leptonic

processes in the effective and full theories.

As we will see, all transitions considered below result in constraints on the elements

of the NN † matrix — and thus on the d = 6 operator coefficients — analogously to the

situation for fermionic singlet Seesaw theories [10], see for instance eq. (4.2). Indeed, even

if we could have expected that Z-mediated processes are sensitive also to UPMNS through

eq. (4.20), this is not the case, as we will show in section 4.3.2.

4.3.1 W decays

The non-unitary mixing matrix N appearing now in the charged weak couplings, eq. (2.58),

results in a leptonic W decay width of the form

Γ(W → lανα) =
∑

i

Γ(W → lανi) =
GSM

F M3
W

6
√

2π
(NN †)αα . (4.21)

Using the value of GF extracted from the decay µ → νµeν̄e, as given in eq. (2.63), the

following combinations can be defined:

(NN †)αα√
(NN †)ee(NN †)µµ

=
Γ(W → ℓανα) 6

√
2π

GF M3
W

≡ fα . (4.22)

With the experimental values of the W decay widths and mass from ref. [14] and GF =

(1.16637 ± 0.00001) × 10−5, the parameters fα take the values:

fe = 1.000 ± 0.024 ,

fµ = 0.986 ± 0.028 ,

fτ = 1.002 ± 0.032 . (4.23)

4.3.2 Invisible Z decay

The modified neutral weak couplings in eqs. (2.59) and (2.60) lead to

Γ(Z → invisible) =
∑

i,j

Γ(Z → ν̄iνj) =
GSM

F M3
Z

12
√

2π
(1 + ρt)

∑

i,j

|[(N †N)−1]ij|2 , (4.24)

where ρt ≈ 0.008 [14] takes into account radiative corrections mainly stemming from loops

including the top quark. As the dominant radiative corrections do not involve leptons, the

17Again, the absolute-value bars in eq. (4.19) can be dropped when choosing the appropiate basis in

flavour space, see the discussion in section 2.3.

– 28 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
1

Constraints on Process Bound
(NN†)µµ

(NN†)ee

Γ(W→µν̄µ)
Γ(W→eν̄e)

0.997 ± 0.010

(NN†)ττ

(NN†)ee

Γ(W→τ ν̄τ )
Γ(W→eν̄e)

1.034 ± 0.0014

(NN†)µµ

(NN†)ee

Γ(π→µν̄µ)
Γ(π→eν̄e)

1.0017 ± 0.0015

(NN†)ττ

(NN†)µµ

Γ(τ→πν̄τ )
Γ(π→µν̄µ) 0.9999 ± 0.0036

(NN†)µµ

(NN†)ee

Γ(τ→ντ µν̄µ)
Γ(τ→ντ eν̄e)

0.9999 ± 0.0020

(NN†)ττ

(NN†)µµ

Γ(τ→ντ eν̄e)
Γ(µ→νµeν̄e)

1.0004 ± 0.0023

(NN†)ττ

(NN†)ee

Γ(τ→ντ µν̄µ)
Γ(µ→νµeν̄e)

1.0002 ± 0.0022

Table 6: Constraints on (NN †)αα from a selection of processes.

dependence on the mixing matrix in eq. (4.24) appears as a global factor to an excellent

approximation. Using the data provided in ref. [14] and the following approximation valid

at first order in ǫΣ

∑

i,j

|[(N †N)−1]ij |2 = Tr(1 − 2 ǫΣ) = 9 − 2
∑

α

(NN †)αα , (4.25)

the following constraint is then obtained:

9 − 2
∑

α(NN †)αα√
(NN †)ee(NN †)µµ

=
12
√

2π Γ(Z → invisible)

GM
F M3

Z(1 + ρt)
= 2.984 ± 0.009 . (4.26)

As it is well known, this number should correspond to the number of active neutrinos at

LEP. Its 2σ departure from the value of 3 is not (yet) significant enough to be interpreted

as a signal of new physics.

4.3.3 Universality tests

The existing constraints on the universality of weak interactions can be turned into bounds

on non-unitarity if the weak couplings are indeed universal, as it is the case in Seesaw

models. The results of our analysis, always at order ǫΣ, are displayed in table 6, where the

bounds have been extracted from ref. [49]. For the leptonic decays, the following expression

has been used ( for α 6= β):

Γ(lα → ναlβνβ) =
GSM

F m5
α

192π3
(NN †)αα(NN †)ββ . (4.27)

Charged pion decays to a lepton pair are also considered in that table.

4.3.4 Z decays into charged leptons

While the processes analyzed in the previous sections permit to put bounds on the diagonal

elements of (NN †), as in the case of the fermionic singlets, the additional presence of flavour

changing effects in the coupling of charged fermions to the Z boson allows to constrain the
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Constraints on Process Bound

|(NN †)eµ| Br(Z → e±µ∓) < 2.5 · 10−3

|(NN †)eτ | Br(Z → e±τ∓) < 6.1 · 10−3

|(NN †)µτ | Br(Z → µ±τ∓) < 6.7 · 10−3

Table 7: Constraints on (NN †)αβ from tree-level Z decays into charged leptons.

off-diagonal elements of (NN †) with tree-level processes, at variance with the fermionic

singlet case. The leptonic width of the Z gauge boson is given by

Γ(Z → lαlα) =
GF M3

Z

3
√

2π
(| sin2 θW |2 + | sin2 θW − 1

2
|[(NN †)2]αα|2) , (4.28)

where the first (second) term in the parenthesis is the contribution of right-handed (left-

handed) leptons. For α 6= β it follows that:

Γ(Z → lαlβ) =
GSM

F M3
Z

3
√

2π

1

4
|[(NN †)2]αβ |2 . (4.29)

It is now possible to obtain the branching ratios at leading order in ǫΣ:

Br(Z → lαlβ) =
Γ(Z → lαlβ)

Γ(Z → lγlγ)
Br(Z → lγ lγ) = (4.30)

=
|(NN †)αβ |2

2 sin4 θW − sin2 θW + 1/4
Br(Z → lγlγ) ,

where we have used |[(NN †)2]αβ |2 = 4|(NN †)αβ |2 and sin2 θW = 0.23 is the Weinberg

angle. From this, the bounds in table 7 have been derived.

4.3.5 µ → eee and τ → 3l decays

The non-unitarity of the leptonic mixing matrix N results, in the case of the fermionic

triplet Seesaw theory under study, in tree-level µ → 3e transitions given by (at leading

order in ǫΣ):

Br(µ− → e+e−e−) ≃ Γ(µ− → e+e−e−)

Γ(µ− → e−νµνe)
(4.31)

= |[(NN †)2]eµ|2
(

3 sin4 θW − 2 sin2 θW +
1

2

)
.

Analogously, τ decays in 3e or 3µ are non-zero and given by:

Br(τ− → l+α l−α l−α ) =
Γ(τ− → l−α l+α l−α )

Γ(τ− → e−ντνe)
Br(τ− → e−ντνe) (4.32)

= |[(NN †)2]ατ |2
(

3 sin4 θW − 2 sin2 θW +
1

2

)
Br(τ− → e−ντνe) ,
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Constraints on Process Bound

|(NN †)eµ| µ− → e+e−e− < 1.1 · 10−6

|(NN †)eτ | τ− → e+e−e− < 1.2 · 10−3

|(NN †)µτ | τ− → µ+µ−µ− < 1.2 · 10−3

|(NN †)τe| τ− → µ+µ−e− < 1.6 · 10−3

|(NN †)τµ||(NN †)eµ| τ− → e+µ−µ− < 3.1 · 10−4

|(NN †)τµ| τ− → e+e−µ− < 1.5 · 10−3

|(NN †)τe||(NN †)µe| τ− → µ+e−e− < 2.9 · 10−4

|(NN †)eµ| µ → eγ 2.8 · 10−5

|(NN †)µτ | τ → µγ 5.2 · 10−3

|(NN †)eτ | τ → eγ 6.6 · 10−3

Table 8: Constraints on (NN †)αβ from charged leptons decays.

where α = µ, e. On the other side, τ decays in 2e(µ) + 1µ(e) are given by:

Br(τ− → l+α l−α l−β ) =
Γ(τ− → l+α l−α l−β )

Γ(τ− → l−δ ντνe)
Br(τ− → l−δ ντνe) (4.33)

= |[(NN †)2]βτ |2
(

2 sin4 θW − sin2 θW +
1

4

)
Br(τ− → l−δ ντνe) ,

Br(τ− → l+β l−α l−α ) =
Γ(τ− → l+β l−α l−α )

Γ(τ− → e−ντνe)
Br(τ− → e−ντνe) (4.34)

=
1

2
|[(NN †)2]ατ |2|[(NN †)2]αβ |2Br(τ− → e−ντνe) ,

where α, β = µ, e with α 6= β. The bounds resulting from these processes for combinations

of NN † elements are contained in table 8.

4.3.6 Complete lagrangian and l1 → l2γ

As the phenomenological consequences of Seesaw scenarios mediated by SU(2) fermionic

triplets remain almost unexplored in the literature, it is worth to study in detail the com-

plete Lagrangian for the high-energy theory in eq. (2.45), developing it in terms of the

electrically charged components18 of ~Σ,

L = Σ+
Ri∂/Σ+

R + Σ−
Ri∂/Σ−

R + Σ0
Ri∂/Σ0

R

+g
(
W+

µ Σ0
RγµΣ−

R − W+
µ Σ+

RγµΣ0
R + h.c.

)
+ g

(
W 3

µΣ+
RγµΣ+

R − W 3
µΣ−

RγµΣ−
R

)

−1

2

(
Σ+

RMΣΣ−c
R + Σ−

RMΣΣ+c
R + Σ0

RMΣΣ0c
R + h.c.

)

−
(
φ0Σ0

RYΣνL +
√

2φ0Σ−
RYΣlL + φ+Σ0

RYΣlL −
√

2φ+Σ+
RYΣνL + h.c.

)
. (4.35)

This Lagrangian, in which the charged components of the triplets are expressed in terms of

2-component fields, is not convenient when considering mixing with the charged leptons,

18Note that the charged conjugate of Σ±
R is not Σ∓

R but Σ±c
R .
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which as usual are expressed in 4-component notation. As the charged triplet components

have 4 degrees of freedom they can all be written in terms of a 4-component unique Dirac

spinor,

Ψ ≡ Σ+c
R + Σ−

R . (4.36)

The neutral fermionic triplet components on the other hand can be left in 2-component

notation, since they have only two degrees of freedom and mix with the neutrinos, which

are also described by 2-component fields. This leads to the Lagrangian

L = Ψi∂/Ψ + Σ0
Ri∂/Σ0

R − ΨMΣΨ −
(

Σ0
R

MΣ

2
Σ0c

R + h.c.

)

+g
(
W+

µ Σ0
RγµPRΨ + W+

µ Σ0c
R γµPLΨ + h.c.

)
− g W 3

µΨγµΨ

−
(
φ0Σ0

RYΣνL +
√

2φ0ΨYΣlL + φ+Σ0
RYΣlL −

√
2φ+νL

cY T
Σ Ψ + h.c.

)
. (4.37)

The mass term of the charged sector shows then the usual aspect for Dirac particles (omit-

ting flavor indices):

L ∋ −(lR ΨR)

(
ml 0

YΣv MΣ

) (
lL
ΨL

)
− (lL ΨL)

(
ml Y †

Σv

0 MΣ

) (
lR
ΨR

)
, (4.38)

The — symmetric — mass matrix for the neutral states is on the other hand given by:

L ∋ −(νL Σ0c)

(
0 YΣ

†v/2
√

2

YΣ
∗v/2

√
2 MΣ/2

)(
νc

L

Σ0

)

−(νc
L Σ0)

(
0 YΣ

T v/2
√

2

YΣv/2
√

2 MΣ/2

)(
νL

Σ0c .

)
(4.39)

The corresponding mixing matrices, necessary to calculate µ → eγ and similar processes,

are explicitly given in appendix B.

µ → eγ, τ → eγ and τ → µγ. l1 → l2γ transitions result from Z and W -mediated

one-loop processes, depicted in figure 2. The amplitude of the matrix element, computed

within the complete theory, eqs. (2.45) and (4.37), is given by (the details of the computa-

tion will be given in a separate publication [15]):

Al1→l2γ = −i
GSM

F√
2

e

16π2
mµue (p − q)PRσλνqνǫλuµ (p) ×

{
C ǫΣ

21 +
∑

i

xνi
(U0νν )2i

(
(U0νν )†

)
i1

+ O
(

1

M4
Σ

)}
(4.40)

In this equation, C = 2.23, xνi
=

m2
νi

M2

W

and ǫΣ
21 corresponds to the d = 6 operator coefficients

ǫΣ
eµ, ǫΣ

eτ and ǫΣ
µτ in eq. (2.53), when considering µ → eγ, τ → eγ and τ → µγ transitions,

respectively. U0νν is the unitary matrix which diagonalizes the neutral lepton mass matrix
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µ e

γ

φ− φ−

ν, Σ0 µ e

γ

φ−
W−

ν, Σ0

µ e

γ

W− φ−

ν, Σ0 µ e

γ

W− W−

ν, Σ0

µ e

γ

Z, H, η

l, Ψ

Figure 2: Diagrams contributing to µ → eγ. φ− is the Goldstone boson associated with the W−

boson, η is the Goldstone boson associated with the Z boson and H stands for the physical Higgs

boson.

for the fields (νL,Σ0c), see appendix B for details. Using these results, the branching ratio

for the l1 → l2γ transition is given by (at order 1/M4
Σ):

BR (l1 → l2γ) =
3

32

α

π

∣∣∣C ǫΣ
21 +

∑
i xνi

(U0νν )2i

(
(U0νν )†

)
i1

∣∣∣
2

(NN †)11(NN †)22
(4.41)

The experimental bounds on these processes result in constraints given in table. 8. These

are comparable to those stemming from tree-level purely leptonic decays.

4.3.7 Combination of all constraints

From all constraints obtained above we have performed a global fit, and the following

bounds on the NN † elements have been derived, at the 90% CL.:

|NN †| ≈




1.001 ± 0.002 < 1.1 · 10−6 < 1.2 · 10−3

< 1.1 · 10−6 1.002 ± 0.002 < 1.2 · 10−3

< 1.2 · 10−3 < 1.2 · 10−3 1.002 ± 0.002


 . (4.42)

Using now the relation obtained in eq. (2.64) between the elements of the coefficient matrix

cd=6 and those of NN †, it follows that

v2

2
|cd=6|αβ =

v2

2

∣∣∣∣Y
†
Σ

1

M †
Σ

1

MΣ
YΣ

∣∣∣∣
αβ

.




3 · 10−3 < 1.1 · 10−6 < 1.2 · 10−3

< 1.1 · 10−6 4 · 10−3 < 1.2 · 10−3

< 1.2 · 10−3 < 1.2 · 10−3 4 · 10−3


 . (4.43)
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Notice that these bounds are stronger than those obtained in the case of the fermionic

singlet Seesaw theory, eq. (4.2). This is due to the fact that now flavour changing processes

with charged fermions are allowed already at tree level.

4.3.8 Signals at colliders from fermionic triplets

As for direct production and detection, alike to the case of the generic type-II Seesaw

model, the non-zero electroweak charge of the triplet results in gauge production from

photon and Z couplings. Only particles with electric charge ±1 exist in this case, though,

and the experimental signals are less clean. Anyway, if light enough, triplet fermions can be

produced in forthcoming colliders through Drell-Yan production. In ref. [6, 8], the following

channels have been analyzed:

• Σ decays into gauge bosons plus light leptons: Σ− → Zl−, Σ− → W−ν, Σ0 → Zν,

Σ0 → W±l∓;

• Σ decays into Higgs plus light leptons: Σ− → φ0l−, Σ0 → φ0ν.

5. Conclusions

While the unique dimension five effective operator is common to all Seesaw models of Ma-

jorana neutrinos, dimension six operators discriminate among them. We have determined

the latter for the three families of Seesaw models: fermionic singlet (typeI), scalar triplet

(type II) and fermionic triplet (type III). They should be the low-energy tell-tale of the

Seesaw mechanism, for any generic beyond the SM theory whose typical scale is larger than

the electroweak scale and which accounts for Majorana neutrino masses. These results have

been gathered in table 1.

For fermionic Seesaw theories, the effective operators obtained result in non-unitary

leptonic mixing matrices affecting the couplings of leptons to gauge bosons, in very precise

patterns. Denoting by N the non-unitary matrix which replaces the usual UPMNS matrix

in the charged current, the neutrino-Z and charged lepton-Z currents have now a flavour

structure given by

J3−ν
µ ∝ N †N , J3−l

µ ∝ 1 , for singlet-fermion Seesaw ,

J3−ν
µ ∝ (N †N)−1 , J3−l

µ ∝ (NN †)2 , for triplet-fermion Seesaw .

For scalar-triplet Seesaw theories the mixing matrices remain unitary, while the dimension

six operators indicate instead correlations between exotic four-fermion couplings and gauge

and Higgs potential parameters, as well as with Higgs transitions.

For all families of Seesaw theories, it turns out that the coefficient matrix of the

dimension six leptonic operators is of the generic form |cd=6| = Y † 1
M2 Y , where Y denote

the new Yukawa couplings and M the high scale of the new theory. Irrespective of the

value of M , we have set bounds on the Y/M ratios for the three theories, resulting in an

overall constraint |Y | ∼ 10−1 M
TeV , with more stringent constraints for specific channels,

specially for type II and III theories due the richness of their phenomenology. The specific
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results have been collected in eq. (4.2), tables 4 and 5, and eq. (4.43), for the fermionic

singlet, scalar triplet and fermionic triplet Seesaw theories, respectively. To achieve them,

we took into account the experimental data on many tree-level processes as well as on

radiative one-loop processes (µ → eγ, τ → µγ and τ → eγ), all of which we computed in

all 3 theories.

Independently of the above, we have also discussed the possible values of M from

a theoretical, albeit model independent, point of view. There is no clue at present on

whether there is a relationship between the source of B − L violation in nature and the

origin of the flavour structure of the SM, which displays Yukawa couplings for charged

fermions ranging from Y ∼ 1 for the top quark to ∼ 10−6 for the electron. The values

of neutrino Yukawa couplings could also be in that same range within Seesaw theories, if

the high energy scale lies in the range between the typical Grand Unification scale down

to the TeV scale. Indeed, the electroweak hierarchy problem prefers new physics scales

closer to the electroweak scale than to the hypothetical Grand Unified scale, if the new

physics involves the Higgs field. To illustrate this point in the present context, we have

explicitly computed the one-loop contributions to the Higgs mass in the three families of

Seesaw theories, showing its quadratic sensitivity to the new scales.

We have then also addressed in this work the question of whether it is possible to

simultaneously allow a “low” scale M ∼ TeV and large, order one, Yukawa couplings,

without fine-tuning neither any Yukawa coupling nor combinations of them. The answer is

positive and guided by symmetry considerations. Indeed, while neutrino masses correspond

to the dimension five operator which violates B − L, all dimension six operators preserve

it. From the point of view of symmetries, it is then a sensible option to expect large effects

of the new physics associated to the latter, while the dimension five operator is further

suppressed.

A natural ansatz proposed is that, if in the new theory the Majorana character is

associated to some tiny parameter µ which heralds the breaking of B−L, the dimension five

operator coefficient is necessarily proportional to it, cd=5 ∼ µ
M2 and thus suppressed. This

mechanism and pattern is stable under radiative corrections, as they have to be proportional

to µ, which is the parameter responsible for the small breaking of a global symmetry. We

call this pattern direct lepton violation since the neutrino masses are proportional to the

(small) lepton number violating quantity µ, rather than inversely proportionnal to the large

lepton number violating heavy field mass.

It turns out that such an ansatz and pattern is already incorporated in the minimal

scalar-triplet Seesaw theory (type II). We have also argued that fermionic Seesaw theories

at the TeV scale (as for instance the so-called inverse Seesaw mechanism) include it as

well and we have explored the corresponding possible textures and realizations. Would

this ansatz happen in nature, new beautiful signals may be expected near the present

experimental bounds and in accelerators sensitive to the TeV scale, such as the LHC or

ILC . The loose bounds we have obtained for the dimension six operator coefficients, above

mentioned, show that it is indeed possible to have such strong signals, with M ∼TeV,

Yukawa couplings of O(10−2-1) and no unnatural fine-tunings.
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A. Non-unitarity

We give here in detail the transformations leading to the currents in eqs. (2.16), (2.17)

and eqs. (2.58), (2.59), (2.60), corresponding to the singlet and triplet fermionic Seesaws,

respectively.

Singlet fermion seesaw. Consider the Lagrangians in eqs. (2.11) and (2.12). We can

rotate to the basis in which the mass matrices are diagonal. In this basis, the neutrino

light eigenstates are redefined as

νi = V eff
iα ναL + V eff ∗

iα να
c
L , (A.1)

(A.2)

where V eff are not unitary matrices because of the field rescaling involved. V eff can be

expressed in terms of the matrix which diagonalizes the neutrino mass matrix19 Uν ,

V eff = (1 − 1

2
ǫN )Uν . (A.3)

(A.4)

In terms of the light mass eigenstates, the leptonic Lagrangian now becomes

Ld≤6
leptons =

1

2
νi

(
i∂/ − mdiag

ν i

)
νi +

1

2
li

(
i∂/ − mdiag

l i

)
li + LCC + LNC , (A.5)

where, in this mass basis, the charged and neutral currents read

LCC =
g√
2
lLW/ −

[
Ω

(
1 − 1

2
ǫN

)
Uν

]
νL + h.c. , (A.6)

LNC =
g

cosθW

{
1

2

[
νLγµ

[
Uν† (

1−ǫN
)

Uν
]
νL−lLγµlL

]
−sin2θW Jem

µ

}
Zµ+eJem

µ Aµ,(A.7)

where Ω ≡ diag(eiω1 , eiω2 , eiω3) reabsorbs three unphysical phases in the definition of the

charged lepton fields. The above expressions look quite complicated, but the measurable

19Notice that Uν does not depend on cd=6 at O(1/M2).
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effects can be expressed in a compact way, denoting by N the non-unitary matrix appearing

in the charged current coupling,

N ≡ Ω

(
1 − 1

2
ǫN

)
Uν . (A.8)

In terms of the matrix N , the charged and neutral currents read

J−CC
µ ≡ eLα γµ Nαi νi, (A.9)

JNC
µ ≡ 1

2
νi γµ(N † N)ij νj, (A.10)

with Niα
† Nαj 6= δij appearing in the neutral current since N is not unitary.

Triplet fermion seesaw. Consider now the Lagrangians in eqs. (2.55)–(2.56). We can

rotate to the basis in which both the leptonic kinetic energies and their mass matrices are

diagonalized. This requires to redefine the leptonic light fields as

νi = V eff
iα ναL + V eff ∗

iα να
c
L , (A.11)

lLi = Keff
iα lLα, (A.12)

lRi = (U l
R)iα lRα, (A.13)

where U l
R is unitary while V eff and Keff are not unitary matrices because of the field

rescaling involved,

V eff = (1 − 1

2
ǫΣ)Uν (A.14)

Keff = (1 − ǫΣ)U l
L , (A.15)

with the matrices Uν and U l diagonalizing the neutrino and charged lepton mass terms,

respectively,20 with

mdiag
ν ≡ UνT mν Uν , mdiag

l ≡ U l
R
†
ml (1 − ǫ)U l

L . (A.16)

In terms of the light mass eigenstates, the leptonic Lagrangian becomes

Ld≤6
leptons =

1

2
νi

(
i∂/ − mdiag

ν i

)
νi +

1

2
li

(
i∂/ − mdiag

l i

)
li + LCC + LNC , (A.17)

in which the charged and neutral currents now are given by

LCC =
g√
2
lLW/ −

[
Ω U l

L
†
(

1 +
1

2
ǫΣ

)
Uν

]
νL + h.c. , (A.18)

LNC =
g

cosθW

{
1

2

[
νLγµ

[
Uν† (

1 − ǫΣ
)

Uν
]
νL − lLγµ

[
Ω U l

L
† (

1 + 2ǫΣ
)
U l

LΩ†
]
lL

]

− sin2 θW Jem
µ

}
Zµ + eJem

µ Aµ , (A.19)

20While Uν does not depend on cd=6 at O(1/M2), U l
L and U l

R do.

– 37 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
1

with, once again, Ω ≡ diag(eiω1 , eiω2 , eiω3) reabsorbing three unphysical phases in the

definition of the charged lepton fields.

Because of the flavour-dependent field rescaling involved, a non-unitary mixing matrix

N has appeared in the charged-current couplings, replacing the usual unitary UPMNS

matrix, while non-unitary flavour mixing appears as well in the couplings of leptons to the

Z boson. The above expressions look quite cumbersome, but the measurable effects can

be cast in a compact way. Indeed, we denote by N the non-unitary matrix appearing in

the charged current coupling,

N ≡ Ω U l
L
†
(

1 +
1

2
ǫΣ

)
Uν . (A.20)

Working at order O(1/M2), i.e. at first order in the ǫΣ parameters, the charged and neutral

currents can then be neatly expressed in the mass basis as

J−CC
µ ≡ lL γµ N ν, (A.21)

J3
µ(neutrinos) ≡ 1

2
ν γµ(N † N)−1 ν , (A.22)

J3
µ(leptons) ≡ 1

2
l γµ(NN †)2 l. (A.23)

B. Lepton mixing in the full type-III seesaw model

As the type-III model has not been properly presented in an extensive way for what con-

cerns notations, mass matrices, mixing matrices, etc, it is useful to discuss it also in the

context of the full theory where the triplets of fermions are not integrated out. This will

also allow to establish the precise tree-level connection between the effective and full the-

ories. This model is defined by eq. (2.45) in a vector notation. It can be equivalently

rewritten in terms of the usual and compact 2 by 2 notation for triplets (with implicit

flavour summation):

L = Tr[Σi/DΣ] − 1

2
Tr[ΣMΣΣc + ΣcΣ] − φ̃†Σ

√
2YΣL − L

√
2YΣ

†Σφ̃ (B.1)

with, for each fermionic triplet,

Σ =

(
Σ0/

√
2 Σ+

Σ− −Σ0/
√

2

)
, Σc =

(
Σ0c/

√
2 Σ−c

Σ+c −Σ0c/
√

2

)
,

Dµ = ∂/µ − i
√

2g

(
W 3

µ/
√

2 W+
µ

W−
µ −W 3

µ/
√

2

)
. (B.2)

Either way, eq. (2.45) or eq. (B.1), lead to the same Lagrangian expressed in terms of

charge components, as given in eq. (4.35) or, in terms of the more convenient spinor field

Ψ ( eq. (4.36) ), in eq. (4.37). This leads to the mass matrices for both neutral and charged

leptons in eqs. (4.38)–(4.39). As it happens with any Dirac mass matrix, the charged lepton
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mass matrix can be diagonalized by a bi-unitary matrix transformation (6 by 6 if there are

3 triplets of fermions) , (
lL,R

ΨL,R

)
= UL,R

(
l′L,R

Ψ′
L,R

)
, (B.3)

while the symmetric neutral lepton mass matrix can be diagonalized by a single unitary

matrix: (
νL

Σ0c

)
= U0

(
ν ′

L

Σ′0c

)
. (B.4)

Writing the mixing matrices in terms of 3 by 3 blocks

UL =

(
ULll ULlΣ

ULΣl ULΣΣ

)
, UR =

(
URll URlΣ

URΣl URΣΣ

)
, U0 =

(
U0νν U0νΣ

U0Σν U0ΣΣ

)
, (B.5)

at first order in Y v/MΣ we obtain:

ULlΣ = Y †vM−1
Σ , ULΣl = −M−1

Σ Y v , U0νΣ =
Y †
√

2
vM−1 , U0Σν = −M−1

Σ

Y√
2
vUPMNS ,

(B.6)

while ULll = ULΣΣ = U0ΣΣ = 1, U0νν = UPMNS, UR = 1.21 In these equations UPMNS

is the lowest order neutrino mass matrix, which is unitary. Note that we have neglected

smaller corrections in Y vml/M
2
Σ. The 6 by 6 mixing matrices UL,R,0 are unitary but

the various 3 by 3 ones are not. This leads to non-unitary effects in the gauge interac-

tions of leptons. Re-expressing the gauge interactions in the mass eigenstate basis we get

eqs. (2.58)–(2.60) with

(NN †)2 = 1 + U †
LΣlULΣl = 1 + 2ǫΣ , (B.7)

(N †N)−1 = 1 − U †
0ΣνU0Σν = 1 − U †

PMNS ǫΣ UPMNS , (B.8)

N = (U †
LllU0νν +

√
2U †

LΣlU0Σν) =

(
1 +

ǫΣ

2

)
UPMNS . (B.9)

In obtaining these results recall that, in the full high-energy theory, all the analysis has

been performed in the flavour basis in which the initial charged lepton mass matrix is

diagonal and the light charged lepton fields have reabsorbed three arbitrary phases. In

the last equalities of eqs. (B.7) and (B.8) we have used eq. (B.6), while the last equality

of eq. (B.9) can be obtained from combining eqs. (B.7) and (B.8). The results we get

in terms of the Yukawa couplings are fully in agreement with the ones obtained in the

effective theory, eqs. (2.58)–(2.62) and eq. (2.64). Note that in eqs. (B.6)–(B.8) (although

not in eq. (B.9)), UPMNS can be replaced by N since the difference is of higher order in

Y v/MΣ.

21It should be remarked that, in the one-loop computations of the radiative processes l1 → l2γ, it has

been necessary to consider the expansion of UR at O( 1

M2

Σ

): URlΣ = mlY
†vM−2

Σ
, URΣl = −M−2

Σ
Y mlv .
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C. Low scale models of light neutrino masses with large Yukawa couplings

In the following, we consider models based on type-I Seesaw mechanism which lead to

large dimension 6 operators. The examples considered can be straightforwardly applied

to the type-III Seesaw too, as the textures are exactly the same. Such a situation arises

for particular patterns of the singlet neutrino mass matrix and/or of the Yukawa matrix.

As already explained in section 3 we are interested in a class of models which, to lead

to sufficiently suppressed neutrino masses and large d = 6 operators, do not require any

precise cancellations between the various (a priori independent) entries of these 2 matrices.

The cases we consider just require that some of the entries of these mass matrices are much

smaller than other ones.

For simplicity, let us first consider — as in section 3 — only one left-handed neutrino

and two singlet fermions. In full generality, in this case there are 3 mass matrix textures

which automatically lead to a vanishing light neutrino mass [in the basis (νL, N1, N2)]:



0 mD1
0

mD1
MN2

MN1

0 MN1
0


 ,




0 0 mD1

0 0 MN1

mD1
MN1

MN2


 ,




0 mD1
mD2

mD1
0 0

mD2
0 0


 (C.1)

In the following we will consider only the first mass matrix since the second one is equivalent

to the first one under N1 ↔ N2, and since the third one which is of the Dirac type doesn’t

lead to any interesting case for our purposes. Assuming MN1
> mD1

the eigenstate which

is predominantly a νL is massless. For MN2
= 0, which corresponds to the well-known

inverse Seesaw model [19] considered in section 3, this can be understood easily from the

fact that assigning L = 1,−1, 1 to νL, N1, N2 respectively, lepton number is conserved. For

MN2
6= 0, which can also be justified from a symmetry in specific extended models [20], this

remains true because the determinant of the mass matrix still vanishes in this case. This

case has the interesting feature to have a large source of lepton number violation (i.e. MN2
)

with a vanishing neutrino mass. 22

In order to induce a naturally small neutrino mass, even if the Yukawa coupling in mD1

is large, and without fine-tuning, one must introduce a small mass parameter µ in the mass

matrix. This can be done in 2 ways (plus combination of them), either from introducing

an extra small Majorana mass, or from introducing an extra small Dirac mass term:



0 mD1
0

mD1
MN2

MN1

0 MN1
µ


 ,




0 mD1
µ

mD1
MN2

MN1

µ MN1
0


 . (C.2)

Expanding in powers of µ, in the first case in eq. (C.2) we obtain:

mν =
m2

D1

MN1

µ

MN1

M2
N1

M2
N1

+ m2
D1

+ O(m2
D1

µ2MN2
/M4

N4
, µ3) , (C.3)

22Note that since the 22 element breaks lepton number, it could induce neutrino mass in presence of extra

interactions coupling to the Ni’s. This contribution would be suppressed by loop factors, couplings of the

extra interactions, as well as the masses of the new states involved, but wouldn’t be necessarily negligible

with respect to the contribution of eq. (C.3) below. We thank S. Antusch, M. Frigerio and J. Kersten for

discussions on this point.
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while the second case leads to:

mν = −2
mD1

µ

MN1

M2
N1

M2
N1

+ m2
D1

+
µ2

MN1

MN2

MN1

(M2
N1

− m2
D1

)2

(M2
N1

+ m2
D1

)2
+ O(µ3) . (C.4)

Eq. (C.3) shows that the neutrino mass is suppressed by an extra factor µ/MN1
, so that

the smallness of neutrino masses, and the argument of no fine tuning, do not require tiny

Yukawa couplings.

As for the first term in eq. (C.4), it has the standard neutrino mass form, i.e. with 2

Dirac masses in the numerator and one Majorana mass in the denominator, but unlike the

usual Seesaw formula, it involves only the product of 2 different Dirac masses. Therefore,

if one of them is smaller than the other, e.g. µ ≪ mD1
, a small neutrino mass can be

obtained here too with a large Yukawa coupling in mD1, and no fine-tuning. As for the

second term in eq. (C.4), which involves the independent parameter MN2
, it also leads to

suppressed neutrino masses, even if MN2
largely breaks lepton number.

Now, in the limit µ → 0 the point is that the coefficient of the d = 5 operator

vanishes but that of the d = 6 operator does not. This can be seen from the fact that

the d = 6 operator takes the form (YN )†(M−2
N )(YN ), see above, and doesn’t vanish in this

limit. Eq. (2.7) in all cases above, with for example mD1
= Y1v ∼ v and MN1

∼ 1TeV,

becomes simply |Y1|2/M2
N1

∼ 1/M2
N1

which is large. The one left-handed plus two right-

handed neutrino example above can be generalized to the 3 left-handed plus 3 right-handed

neutrino above. The condition for having vanishing neutrino masses is to start with a 6

by 6 mass matrix which has rank 3. Assuming that all entries of the Yukawa coupling

matrix are independent (i.e. barring cancellations between the various entries), it turns out

that there is only one possibility to have large Yukawa couplings with three massless light

neutrinos and three massive right-handed neutrinos. In the basis (νe, νµ, ντ , N1, N2, N3) it

is




0 0 0 c 0 0

0 0 0 d 0 0

0 0 0 e 0 0

c d e f g a

0 0 0 g b 0

0 0 0 a 0 0




, (C.5)

plus permutations. This matrix has the particularity that only one of the 3 right-handed

neutrinos couples to light neutrinos at leading order (just as the 1 ν plus 2 N case above).

From a simple lepton number assignment there is only one way to justify this pattern,

which gives in addition f = g = 0, i.e. by taking Lνe = Lνµ = Lντ = LN1
= −LN3

= 1 and
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LN2
= 0.23 24. The matrix of eq. (C.5) can be perturbed in many ways:




0 0 0 c ε1 ε2

0 0 0 d ε3 ε4

0 0 0 e ε5 ε6

c d e f g a

ε1 ε3 ε5 g b ε7

ε2 ε4 ε6 a ε7 ε8




, (C.6)

To have two massless light neutrinos, at least one εi among ε1,...,7 must be different from 0.

To have 3 massless light neutrinos, at least two well chosen εi must be different from 0, for

example ε3 and ε6. It is beyond the scope of the present analysis to determine all possible

perturbations textures which may accommodate the neutrino data along these lines, see

also ref. [50]. There are many possibilities, and the point is that all of them do lead to

unsuppressed d = 6 operators (i.e. with non-vanishing coefficients in the limit in which all

εi = 0) as long as a and b, together with at least one parameter among c, d, e, are different

from 0.
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